“This is a great, comprehensive Ubuntu book
that'll be a valuable resource for people of all
technical levels. Well done!”

—John Dong, Ubuntu Backports Team Leader
and Ubuntu Forum Councd Membar

b

A Practical Guide to ..

Ubuntu
™% Linux

» The most comprehensive resource
for installing ond cotﬁgmng Ubuntu servers

» Easy-to-follow JumpStarts for seffing up -
Sambo, Apache, Mai, FTB, NIS, OpenSSH, DNS;-
. ond other complex servers in minutes o
» Hundreds of examples ond o 72:oge index

Ubuney,
%\%. moke this book the perfect desktop componion
A, -
§

Mark G. Sobell

PRAISE FOR A PRACTICAL GUIDE TO UBUNTU LINUX®

“I am so impressed by how Mark Sobell can approach a complex topic
in such an understandable manner. His command examples are espe-
cially useful in providing a novice (or even advanced) administrator
with a cookbook on how to accomplish real-world tasks on Linux. He
is truly an inspired technical writer!”

—George Vish 11
Senior Education Consultant
Hewlett-Packard Company

“Overall, I think it’s a great, comprehensive Ubuntu book that’ll be a
valuable resource for people of all technical levels.”

—Jobn Dong
Ubuntu Forum Council Member
Backports Team Leader

“The JumpStart sections really offer a quick way to get things up and
running, allowing you to dig into the details of his books later.”

—Scott Mann
Aztek Networks

“Ubuntu is gaining popularity at the rate alcohol did during prohibition,
and it’s great to see a well-known author write a book on the latest and
greatest version. Not only does it contain Ubuntu-specific information,
but it also touches on general computer-related topics, which will help
the average computer user to better understand what’s going on in the
background. Great work, Mark!”

—Daniel R. Arfsten
Pro/ENGINEER Drafter/Designer

“I read a lot of Linux technical information every day, but 'm rarely
impressed by tech books. I usually prefer online information sources
instead. Mark Sobell’s books are a notable exception. They’re clearly
written, technically accurate, comprehensive-and actually enjoyable
to read.”

—Matthew Miller
Senior Systems Analyst/Administrator
BU Linux Project
Boston University Office
of Information Technology

“I would so love to be able to use this book to teach a class about not
just Ubuntu or Linux but about computers in general. It is thorough
and well written with good illustrations that explain important con-
cepts for computer usage.”

—Nathan Eckenrode
New York Local Community Team

PRAISE FOR OTHER BOOKS BY MARK SOBELL

“I currently own one of your books, A Practical Guide to Linux®. 1
believe this book is one of the most comprehensive and, as the title
says, practical guides to Linux I have ever read. I consider myself a
novice and I come back to this book over and over again.”

—Albert]. Nguyen

“Thank you for writing a book to help me get away from Windows XP
and to never touch Windows Vista. The book is great; I am learning a
lot of new concepts and commands. Linux is definitely getting easier
to use.”

—James Moritz

“I have been wanting to make the jump to Linux but did not have the
guts to do so-until I saw your familiarly titled A Practical Guide to Red
Hat® Linux® at the bookstore. I picked up a copy and am eagerly look-
ing forward to regaining my freedom.”

—Carmine Stoffo
Machine and Process Designer
to pharmaceutical industry

“I am currently reading A Practical Guide to Red Hat® Linux® and am
finally understanding the true power of the command line. I am new to
Linux and your book is a treasure.”

—Juan Gonzalez

A PRACTICAL GUIDE TO UBUNTU LINUX®

This page intentionally left blank

A PRACTICAL GUIDE TO UBUNTU LINUX®

MARK G. SOBELL

L &4
oo
(X J

PRENTICE

HALL
Upper Saddle River, NJ ® Boston e Indianapolis ® San Francisco
New York @ Toronto ® Montreal ® London ® Munich e Paris ¢ Madrid
Capetown ® Sydney ® Tokyo ® Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

Ubuntu is a registered trademark of Canonical Ltd.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data
Sobell, Mark G.

A practical guide Ubuntu Linux / Mark G. Sobell.

p. cm.

Includes index.

ISBN-13: 978-0-13-236039-5 (pbk. : alk. paper)

1. Linux. 2. Operating systems (Computers) I. Title.

QA76.76.063559497 2008

005.4'32—dc22

2007043244

Copyright © 2008 Mark G. Sobell

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Permissions

501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671-3447

ISBN-13: 978-0-13-236039-5
ISBN-10: 0-13-236039-X

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, December 2007

http://www.prenhallprofessional.com/safarienabled
www.prenhallprofessional.com

For my dad,
Morton Sobell,
who taught me to examine
the world very carefully.

This page intentionally left blank

BRIEF CONTENTS

CONTENTS X/
PREFACE xxxv

1

WELCOME TO LINUX 1

PART | INSTALLING UBUNTU LINUX 21

2
3

INSTALLATION OVERVIEW 23
STEP-BY-STEP INSTALLATION 45

PART Il GETTING STARTED WITH UBUNTU LINUX 85

4

5
6
7

INTRODUCTION TO UBUNTU LINUX 87
THE LINUX UTILITIES 145

THE LINUX FILESYSTEM 183

THE SHELL 219

PART Il DIGGING INTO UBUNTU LINUX 249

8
9

LiNnux GUIs: X AND GNOME 251
THE BOURNE AGAIN SHELL 275

10 NETWORKING AND THE INTERNET 353

11

PROGRAMMING THE BOURNE AGAIN SHELL 395

X BRIEF CONTENTS

PART IV SYSTEmM ADMINISTRATION 483

12
13
14
15
16
17
18

SYSTEM ADMINISTRATION: CORE CONCEPTS 485
FILES, DIRECTORIES, AND FILESYSTEMS 553
DOWNLOADING AND INSTALLING SOFTWARE 583
PRINTING WITH CUPS 611

BUILDING A LINUX KERNEL 635
ADMINISTRATION TASKS 657

CONFIGURING A LAN 693

PART V USING CLIENTS AND SETTING UP SERVERS

19
20
21
22
23
24
25
26
27

OPENSSH: SECURE NETWORK COMMUNICATION 707

FTP: TRANSFERRING FILES ACROSS A NETWORK 729

exim4: SETTING UP MAIL SERVERS, CLIENTS, AND MORE 755
NIS: NETWORK INFORMATION SERVICE 781

NFS: SHARING FILESYSTEMS 799

SAMBA: LINUX AND WINDOWS FILE AND PRINTER SHARING 823
DNS/BIND: TRACKING DOMAIN NAMES AND ADDRESSES 845
firestarter AND iptables: SETTING UP A FIREWALL 885
APACHE: SETTING UP A WEB SERVER 915

PART VI APPENDIXES 969

A

m O O @

REGULAR EXPRESSIONS 971

HeLp 981

SECURITY 991

THE FREE SOFTWARE DEFINITION 1011
THE LINUX 2.6 KERNEL 1015

GLOSSARY 1021
INDEX 1071

705

CONTENTS

PREFACE XXXVi

CHAPTER 1: WELCOME TO LINUX 1

The GNU-Linux Connection 2
The History of GNU-Linux 2
The Code Is Free 4
Have Fun! §

The Linux 2.6 Kernel §
The Heritage of Linux: UNIX §

What Is So Good About Linux? 6
Why Linux Is Popular with Hardware Companies and Developers 7
Linux Is Portable 8
Standards 9
The C Programming Language 9
Ubuntu Linux 10

Overview of Linux 10
Linux Has a Kernel Programming Interface 10
Linux Can Support Many Users 11
Linux Can Run Many Tasks 11
Linux Provides a Secure Hierarchical Filesystem 12
The Shell: Command Interpreter and Programming Language 12
A Large Collection of Useful Utilities 14
Interprocess Communication 14
System Administration 15

Xii CONTENTS

Additional Features of Linux 15
GUIs: Graphical User Interfaces 15
(Inter)Networking Utilities 16
Software Development 17
Conventions Used in This Book 17
Chapter Summary 20
Exercises 20

PART I INSTALLING UBUNTU LINUX 21

CHAPTER 2: INSTALLATION OVERVIEW 23

The Live/Install Desktop CD/DVD 24
More Information 24
Planning the Installation 25
Considerations 25
Requirements 25
Processor Architecture 26
Interfaces: Installer and Installed System 27
Ubuntu Releases 28
Ubuntu Editions 28
Installing a Fresh Copy or Upgrading an Existing Ubuntu System? 29
Setting Up the Hard Disk 30
RAID 34
LVM: Logical Volume Manager 35
The Installation Process 36
Downloading and Burning a CD/DVD 37
The Easy Way to Download a CD ISO Image File 37
Other Ways to Download a CD/DVD ISO Image File 37
Verifying an ISO Image File 40
Burning the CD/DVD 40
Gathering Information About the System 41
Chapter Summary 42
Exercises 43
Advanced Exercises 43

CHAPTER 3: STEP-BY-STEP INSTALLATION 45

Basic Installation from the Live/Install Desktop CD/DVD 46
Booting the System 46
Checking the CD/DVD for Defects 47
Live Session 47

CONTENTS Xiii

Graphical Partitioners 53
gparted: the GNOME Partition Editor 53
ubiquity: Setting Up Partitions 56
Upgrading to a New Release 59
Installing KDE 60
Setting Up a Dual-Boot System 61
Creating Free Space on a Windows System 61
Installing Ubuntu Linux as the Second Operating System 61
Advanced Installation 62
The Live/Install Desktop CD: The Initial Install Screen 62
The Alternate CD Initial Install Screen Menu 65
The Server CD Initial Install Screen Menu 66
The DVD 67
The Ubuntu Textual Installer 67
The X Window System 74
displayconfig-gtk: Configures the Display 75
The xorg.conf File 77
gdm: Displays a Graphical Login 82
Chapter Summary 83
Exercises 83
Advanced Exercises 84

PART Il GETTING STARTED WITH UBUNTU LINUX 85

CHAPTER 4: INTRODUCTION TO UBUNTU LINUX 87

Curbing Your Power: root Privileges/sudo 88

A Tour of the Ubuntu Linux Desktop 89
Logging In on the System 89
Introduction 90
Launching Programs from the Desktop 91
Switching Workspaces 93
Setting Personal Preferences 94
Mouse Preferences 95
Working with Windows 96
Using Nautilus to Work with Files 96
The Update Notifier 100
Changing Appearances (Themes) 102
Session Management 104
Getting Help 104
Feel Free to Experiment 105
Logging Out 105

Xiv CONTENTS

Getting the Most out of the Desktop 105
GNOME Desktop Terminology 105
Opening Files 106
Panels 107
The Main Menu 110
Windows 111
The Object Context Menu 115
Updating, Installing, and Removing Software Packages 119
Software Sources Window 119
Add/Remove Applications 120
Synaptic: Finds, Installs, and Removes Software 121
Where to Find Documentation 124
Ubuntu Help Center 124
man: Displays the System Manual 124
info: Displays Information About Utilities 126
The —help Option 129
HOWTOs: Finding Out How Things Work 129
Getting Help with the System 130
More About Logging In 132
The Login Screen 132
What to Do if You Cannot Log In 133
Logging In Remotely: Terminal Emulators, ssh, and Dial-Up Connections 133
Logging In from a Terminal (Emulator) 134
Changing Your Password 135
Using Virtual Consoles 136
Working from the Command Line 136
Correcting Mistakes 137
Repeating/Editing Command Lines 139
Controlling Windows: Advanced Operations 139
Changing the Input Focus 139
Changing the Resolution of the Display 140
The Window Manager 141
Chapter Summary 142
Exercises 143

Advanced Exercises 144

CHAPTER 5: THE LINUX UTILITIES 145

Special Characters 146
Basic Utilities 147
Is: Lists the Names of Files 147
cat: Displays a Text File 147
rm: Deletes a File 148
less Is more: Display a Text File One Screen at a Time 148
hostname: Displays the System Name 149

CONTENTS XV

Working with Files 149
cp: Copies a File 149
mv: Changes the Name of a File 150
Ipr: Prints a File 151
grep: Searches for a String 151
head: Displays the Beginning of a File 152
tail: Displays the End of a File 152
sort: Displays a File in Order 153
unig: Removes Duplicate Lines from a File 154
diff: Compares Two Files 154
file: Tests the Contents of a File 155

| (Pipe): Communicates Between Processes 156

Four More Utilities 157
echo: Displays Text 157
date: Displays the Time and Date 157
script: Records a Shell Session 158
unix2dos: Converts Linux and Macintosh Files to Windows Format 159

Compressing and Archiving Files 159
bzip2: Compresses a File 160
bunzip2 and bzcat: Decompress a File 160
gzip: Compresses a File 161
tar: Packs and Unpacks Archives 161
Locating Commands 164
which and whereis: Locate a Utility 164
apropos: Searches for a Keyword 165
slocate: Searches for a File 166
Obtaining User and System Information 166
who: Lists Users on the System 167
finger: Lists Users on the System 167
w: Lists Users on the System 169
Communicating with Other Users 170
write: Sends a Message 170
mesg: Denies or Accepts Messages 171
Email 171
Tutorial: Creating and Editing a File with vim 172
Starting vim 172
Command and Input Modes 174
Entering Text 175
Getting Help 176
Ending the Editing Session 178
The compatible Parameter 179
Chapter Summary 179
Exercises 181
Advanced Exercises 182

XVi

CONTENTS

CHAPTER 6: THE LINUX FILESYSTEM 183

The Hierarchical Filesystem 184

Directory Files and Ordinary Files 184
Filenames 185
The Working Directory 188
Your Home Directory 188
Pathnames 189
Absolute Pathnames 189
Relative Pathnames 190

Directory Commands 191
mkdir: Creates a Directory 191
Important Standard Directories and Files 194

Working with Directories 196
rmdir: Deletes a Directory 196
Using Pathnames 197
mv, cp: Move or Copy Files 197
mv: Moves a Directory 198
Access Permissions 199
Is —I: Displays Permissions 199
chmod: Changes Access Permissions 200
Setuid and Setgid Permissions 201
Directory Access Permissions 202

ACLs: Access Control Lists 203
Enabling ACLs 204
Working with Access Rules 204
Setting Default Rules for a Directory 207
Links 209
Hard Links 210
Symbolic Links 212
rm: Removes a Link 214
Chapter Summary 214
Exercises 216
Advanced Exercises 218

CHAPTER 7: THE SHELL 219

The Command Line 220
Syntax 220
Processing the Command Line 223
Executing the Command Line 225
Editing the Command Line 22§

Standard Input and Standard Output 226
The Screen as a File 226

The Keyboard and Screen as Standard Input and Standard Output

Redirection 228
Pipes 234

227

CONTENTS Xvii

Running a Program in the Background 237
Filename Generation/Pathname Expansion 239
The ? Special Character 239
The * Special Character 240
The [] Special Characters 241
Builtins 243
Chapter Summary 244
Utilities and Builtins Introduced in This Chapter 245
Exercises 245
Advanced Exercises 247

PART Ill DIGGING INTO UBUNTU LINUX

CHAPTER 8: LINUX GUIs: XAND GNOME 251

X Window System 252
Using X 254
Window Managers 259
The Nautilus File Browser Window 260
The View Pane 261
The Side Pane 261
Control Bars 262
Menubar 263
GNOME Utilities 266
Deskbar Applet 266
Font Preferences 267
Pick a Font Window 268
Pick a Color Window 268
Run Application Window 269
Searching for Files 269
GNOME Terminal Emulator/Shell 270

Chapter Summary 271
Exercises 272
Advanced Exercises 272

CHAPTER 9: THE BOURNE AGAIN SHELL 275

Background 276

Shell Basics 277
Startup Files 277
Commands That Are Symbols 280
Redirecting Standard Error 280
Writing a Simple Shell Script 282
Separating and Grouping Commands 286
Job Control 290
Manipulating the Directory Stack 292

249

Xviii

CONTENTS

Parameters and Variables 295
User-Created Variables 296
Variable Attributes 299
Keyword Variables 301
Special Characters 309
Processes 310
Process Structure 310
Process Identification 310
Executing a Command 312
History 312
Variables That Control History 312
Reexecuting and Editing Commands 314
The Readline Library 322
Aliases 328
Single Versus Double Quotation Marks in Aliases 329
Examples of Aliases 330
Functions 331
Controlling bash Features and Options 334
Command Line Options 334
Shell Features 334
Processing the Command Line 338
History Expansion 338
Alias Substitution 338
Parsing and Scanning the Command Line 338
Command Line Expansion 339

Chapter Summary 347
Exercises 349
Advanced Exercises 351

CHAPTER 10: NETWORKING AND THE INTERNET

Types of Networks and How They Work 355
Broadcast Networks 356
Point-to-Point Networks 356
Switched Networks 356
LAN: Local Area Network 357
WAN: Wide Area Network 358
Internetworking Through Gateways and Routers 358
Network Protocols 361
Host Address 363
CIDR: Classless Inter-Domain Routing 367
Hostnames 368
Communicate Over a Network 370
finger: Displays Information About Remote Users 370
Sending Mail to a Remote User 371
Mailing List Servers 372

353

CONTENTS XiX

Network Utilities 372
Trusted Hosts 372
OpenSSH Tools 373
telnet: Logs In on a Remote System 373
ftp: Transfers Files Over a Network 375
ping: Tests a Network Connection 375
traceroute: Traces a Route Over the Internet 376
host and dig: Query Internet Nameservers 378
jwhois: Looks Up Information About an Internet Site 378
Distributed Computing 379
The Client/Server Model 380
DNS: Domain Name Service 381
Ports 383
NIS: Network Information Service 383
NES: Network Filesystem 383
Internet Services 384
Proxy Servers 387
RPC Network Services 387
Usenet 388
WWW: World Wide Web 390
URL: Uniform Resource Locator 391
Browsers 392
Search Engines 392

Chapter Summary 392
Exercises 393
Advanced Exercises 394

CHAPTER 11: PROGRAMMING THE BOURNE AGAIN SHELL 395

Control Structures 396
if...then 396
if...then...else 400
if...then...elif 403
for...in 409
for 410
while 412
until 416
break and continue 418
case 419
select 425
Here Document 427

File Descriptors 429

Parameters and Variables 432
Array Variables 432
Locality of Variables 434
Special Parameters 436
Positional Parameters 438
Expanding Null and Unset Variables 443

XX

CONTENTS

Builtin Commands 444
type: Displays Information About a Command 445
read: Accepts User Input 445
exec: Executes a Command 448
trap: Catches a Signal 451
kill: Aborts a Process 454
getopts: Parses Options 454
A Partial List of Builtins 457
Expressions 458
Arithmetic Evaluation 458
Logical Evaluation (Conditional Expressions) 459
String Pattern Matching 460
Operators 461
Shell Programs 466
A Recursive Shell Script 467
The quiz Shell Script 470
Chapter Summary 476
Exercises 478
Advanced Exercises 480

PART IV SYSTEM ADMINISTRATION 483

CHAPTER 12: SYSTEM ADMINISTRATION:
CORE CONCEPTS 485

Running Commands with root Privileges 487
sudo: Running a Command with root Privileges 490
sudoers: Configuring sudo 494
Unlocking the root Account (Assigning a Password to root) 499
su: Gives You Another User’s Privileges 499

The Upstart Event-Based init Daemon 500
Software Packages 501
Definitions 501
Jobs 503
SysVinit (rc) Scripts: Start and Stop System Services 507
System Operation 510
Runlevels 510
Booting the System 511
Recovery (Single-User) Mode 512
Going to Multiuser Mode 515
LoggingIn 516

CONTENTS XXi

Logging Out 517
Bringing the System Down 518
Crash 519
Avoiding a Trojan Horse 520
Getting Help 522
Textual System Administration Utilities 522
kill: Sends a Signal to a Process 522
Other Textual Utilities 525
Setting Up a Server 527
Standard Rules in Configuration Files 528
rpcinfo: Displays Information About portmap 530
The inetd and xinetd Superservers 531
Securing a Server 532
DHCP: Configures Network Interfaces 538
nsswitch.conf: Which Service to Look at First 542
How nsswitch.conf Works 542
PAM 545
More Information 546
Configuration Files, Module Types, and Control Flags 546
Example 548
Modifying the PAM Configuration 549
Chapter Summary 550
Exercises 551
Advanced Exercises 551

CHAPTER 13: FILES, DIRECTORIES, AND FILESYSTEMS 553

Important Files and Directories 554

File Types 566
Ordinary Files, Directories, Links, and Inodes 566
Special Files 567

Filesystems 570
mount: Mounts a Filesystem 572
umount: Unmounts a Filesystem 575
fstab: Keeps Track of Filesystems 576
fsck: Checks Filesystem Integrity 577
tune2fs: Changes Filesystem Parameters 578
RAID Filesystem 580

Chapter Summary 580
Exercises 580
Advanced Exercises 581

XXii

CONTENTS

CHAPTER 14: DOWNLOADING AND INSTALLING SOFTWARE

JumpStart: Installing and Removing Packages Using aptitude 585
Finding the Package That Holds a File You Need 587
APT: Keeps the System Up-to-Date 588

Repositories 588

sources.list: Specifies Repositories for APT to Search 589

The APT Local Package Indexes and the APT Cache 590

The apt cron Script and APT Configuration Files 590

aptitude: Works with Packages and the Local Package Index 592
apt-cache: Displays Package Information 596

apt-get source: Downloads Source Files 598

dpkg: The Debian Package Management System 598

deb Files 599

dpkg: The Foundation of the Debian Package Management System 600

BitTorrent 604
Installing Non-dpkg Software 607

The /opt and /usr/local Directories 607
GNU Configure and Build System 607

wget: Downloads Files Noninteractively 609

Chapter Summary 610
Exercises 610
Advanced Exercises 610

CHAPTER 15: PRINTING WITH CUPS 611
Introduction 612

Prerequisites 612
More Information 613
Notes 613

JumpStart I: Configuring a Local Printer 614

system-config-printer: Configuring a Printer 614

Configuration Tabs 614
Setting Up a Remote Printer 616

JumpStart IT: Configuring a Remote Printer Using the CUPS Web Interface
Traditional UNIX Printing 622
Configuring Printers 624

The CUPS Web Interface 624
CUPS on the Command Line 626
Sharing CUPS Printers 629

Printing from Windows 630

Printing Using CUPS 631
Printing Using Samba 631

583

618

CONTENTS XXiii

Printing to Windows 632
Chapter Summary 633
Exercises 633

Advanced Exercises 633

CHAPTER 16: BUILDING A LINUX KERNEL 635

Prerequisites 636

Downloading the Kernel Source Code 637
aptitude: Downloading and Installing the Kernel Source Code 637
git: Obtaining the Latest Kernel Source Code 637

Read the Documentation 638

Configuring and Compiling the Linux Kernel 639
.config: Configures the Kernel 639
Customizing a Kernel 640
Cleaning the Source Tree 642
Compiling a Kernel Image File and Loadable Modules 643
Using Loadable Kernel Modules 643

Installing the Kernel, Modules, and Associated Files 646
Rebooting 647

grub: The Linux Boot Loader 647
menu.lst: Configures grub 648
update-grub: Updates the menu.lst file 651
grub-install: Installs the MBR and grub Files 653

dmesg: Displays Kernel Messages 654
Chapter Summary 655

Exercises 656

Advanced Exercises 656

CHAPTER 17: ADMINISTRATION TASKS 657

Configuring User and Group Accounts 658
users-admin: Manages User Accounts 658
useradd: Adds a User Account 660
userdel: Removes a User Account 661
usermod: Modifies a User Account 661
groupadd: Adds a Group 661
groupdel: Removes a Group 661

Backing Up Files 662
Choosing a Backup Medium 663
Backup Utilities 663
Performing a Simple Backup 665
dump, restore: Back Up and Restore Filesystems 666

XXiv

CONTENTS

Scheduling Tasks 668
cron and anacron: Schedule Routine Tasks 668
at: Runs Occasional Tasks 671
System Reports 671
vmstat: Reports Virtual Memory Statistics 671
top: Lists Processes Using the Most Resources 672
parted: Reports on and Partitions a Hard Disk 673
Keeping Users Informed 677
Creating Problems 678
Solving Problems 679
Helping When a User Cannot LogIn 679
Speeding Up the System 680
Isof: Finds Open Files 681
Keeping a Machine Log 681
Keeping the System Secure 682
Log Files and Mail for root 683
Monitoring Disk Usage 683
logrotate: Manages Log Files 684
Removing Unused Space from Directories 686
Disk Quota System 687
syslogd: Logs System Messages 688
Chapter Summary 690
Exercises 690

Advanced Exercises 691

CHAPTER 18: CONFIGURING A LAN 693

Setting Up the Hardware 694
Connecting the Computers 694
Routers 695
NIC: Network Interface Card 695
Tools 695
Configuring the Systems 697
network-admin: Configures Network Connections 698
nm-applet: Configures Network Connections Automatically 700
iwconfig: Configures a Wireless NIC 700
Setting Up Servers 702
More Information 703
Chapter Summary 703
Exercises 704
Advanced Exercises 704

CONTENTS XXV

PART V USING CLIENTS AND SETTING UP SERVERS 705

CHAPTER 19: OPENSSH: SECURE NETWORK

COMMUNICATION 707

Introduction 708

About OpenSSH 708
Files 708
How OpenSSH Works 710
More Information 711

OpenSSH Clients 711
Prerequisites 711
JumpStart: Using ssh and scp 711
Setup 712
ssh: Connects to or Executes Commands on a Remote System 714
scp: Copies Files to and from a Remote System 716
sftp: A Secure FIP Client 718
~/.ssh/config and /etc/ssh/ssh_config Configuration Files 718
sshd: OpenSSH Server 720
Prerequisites 720
Note 720
JumpStart: Starting the sshd Daemon 720
Authorized Keys: Automatic Login 721
Command Line Options 722
/etc/ssh/sshd_config Configuration File 722
Troubleshooting 724
Tunneling/Port Forwarding 725
Chapter Summary 727
Exercises 728
Advanced Exercises 728

CHAPTER 20: FTP: TRANSFERRING FILES ACROSS A NETWORK 729

Introduction 730
More Information 731

FTP Client 731
Prerequisites 731
JumpStart I: Downloading Files Using ftp 732
Notes 735
Anonymous FTP 735
Automatic Login 735
Binary Versus ASCII Transfer Mode 736
ftp Specifics 736

XXVi CONTENTS

FTP Server (vsftpd) 740
Prerequisites 740
Notes 740
JumpStart II: Starting a vsftpd Server 741
Testing the Setup 741
vsftpd.conf: The vsftpd Configuration File 742
Chapter Summary 753
Exercises 753

Advanced Exercises 754

CHAPTER 21: exim4: SETTING UP MAIL SERVERS,
CLIENTS, AND MORE 755

Introduction to exim4 756
Prerequisites 757
Notes 757
More Information 758
JumpStart I: Configuring exim4 to Use a Smarthost 758
JumpStart II: Configuring exim4 to Send and Receive Email 760
How exim4 Works 761
Mail Logs 762
Working with Messages 763
Aliases and Forwarding 763
Related Programs 765
Configuring exim4 765
Using a Text Editor to Configure exim4 766
The update-exim4.conf.conf Configuration File 766
dpkg-reconfigure: Configures exim4 768
SpamAssassin = 768
Prerequisites 769
How SpamAssassin Works 769
Testing SpamAssassin 770
Configuring SpamAssassin 771
Additional Email Tools 772
Webmail 772
Mailing Lists 774
Setting Up an IMAP or POP3 Server 776
Authenticated Relaying 777
Alternatives to exim4 779
Chapter Summary 779
Exercises 780
Advanced Exercises 780

CONTENTS XXVii

CHAPTER 22: NIS: NETWORK INFORMATION SERVICE 781

Introduction to NIS 782

How NIS Works 782
More Information 784

Setting Up an NIS Client 784

Prerequisites 785

Notes 785

Step-by-Step Setup 786

Testing the Setup 787

yppasswd: Changes NIS Passwords 788
Setting Up an NIS Server 790

Prerequisites 790

Notes 791

Step-by-Step Setup 791

Testing 796

yppasswdd: The NIS Password Update Daemon 797

Chapter Summary 798
Exercises 798
Advanced Exercises 798

CHAPTER 23: NFS: SHARING FILESYSTEMS 799

Introduction 800
More Information 802

Setting Up an NFS Client 802
Prerequisites 802
JumpStart I: Mounting a Remote Directory Hierarchy 803
mount: Mounts a Directory Hierarchy 804
Improving Performance 806
/etc/fstab: Mounts Directory Hierarchies Automatically 807
Setting Up an NFS Server 808
Prerequisites 808
Notes 808
JumpStart II: Configuring an NFS Server Using shares-admin 809
Manually Exporting a Directory Hierarchy 811
Where the System Keeps NFS Mount Information 815
exportfs: Maintains the List of Exported Directory Hierarchies 817
Testing the Server Setup 818
automount: Mounts Directory Hierarchies on Demand 818
Chapter Summary 821
Exercises 822
Advanced Exercises 822

XXviii CONTENTS

CHAPTER 24: SAMBA: LINUX AND WINDOWS FILE
AND PRINTER SHARING 823

Introduction 824

About Samba 825
Prerequisites 825
More Information 825
Notes 825
Samba Users, User Maps, and Passwords 826

JumpStart: Configuring a Samba Server Using shares-admin 826
swat: Configures a Samba Server 828

smb.conf: Manually Configuring a Samba Server 832
Parameters in the smbd.conf File 832
The [homes] Share: Sharing Users’ Home Directories 838

Accessing Linux Shares from Windows 838
Browsing Shares 838
Mapping a Share 839

Accessing Windows Shares from Linux 839
smbtree: Displays Windows Shares 839
smbclient: Connects to Windows Shares 840
Browsing Windows Networks 840
Mounting Windows Shares 841

Troubleshooting 841

Chapter Summary 844

Exercises 844

Advanced Exercises 844

CHAPTER 25: DNS/BIND: TRACKING DOMAIN NAMES
AND ADDRESSES 845

Introduction to DNS 846
Nodes, Domains, and Subdomains 846
Zones 848
Queries 849
Servers 850
Resource Records 851
DNS Query and Response 854
Reverse Name Resolution 855
About DNS 857
How DNS Works 857
Prerequisites 857
More Information 858
Notes 858

CONTENTS XXiX

JumpStart I: Setting Up a DNS Cache 858

Setting Up BIND 860
named.conf: The named Configuration File 860
Zone Files 863
A DNS Cache 864
DNS Glue Records 868
TSIGs: Transaction Signatures 868
Running BIND in a chroot Jail 870
Troubleshooting 872
A Full-Functioned Nameserver 873
A Slave Server 877
A Split Horizon Server 878
Chapter Summary 883
Exercises 883

Advanced Exercises 884

CHAPTER 26: firestarter AND iptables: SETTING
UP A FIREWALL 885

About firestarter 886
Prerequisites 886
Notes 887
More Information 888

JumpStart: Building a Firewall Using the firestarter Firewall Wizard 888

firestarter: Maintains a Firewall 890
The Status Tab 890
The Events Tab 892
The Policy Tab 894

How iptables Works 896

About iptables 899
More Information 899
Prerequisites 899
Notes 899

Anatomy of an iptables Command 900

Building a Set of Rules 901
Commands 901
Packet Match Criteria 903
Display Criteria 903
Match Extensions 903
Targets 906

Copying Rules to and from the Kernel 907

XXX

CONTENTS

Sharing an Internet Connection Using NAT 908
Connecting Several Clients to a Single Internet Connection 910
Connecting Several Servers to a Single Internet Connection 912
Chapter Summary 912
Exercises 913
Advanced Exercises 913

CHAPTER 27: APACHE: SETTING UP A WEB SERVER 915

Introduction 916

About Apache 917
Prerequisites 917
More Information 918
Notes 918
JumpStart: Getting Apache Up and Running 919
Modifying the Configuration Files 919
Testing Apache 920
Putting Your Content in Place 920
Configuring Apache 921
Configuration Tools 921
Include Directives 922
Filesystem Layout 923

Configuration Directives 925
Directives I: Directives You May Want to Modify as You Get Started 926
Contexts and Containers 931
Directives II: Advanced Directives 935

The Ubuntu apache2.conf File 948
The Ubuntu default Configuration File 950
Redirects 951

Content Negotiation 951

Type Maps 951

MultiViews 952
Server-Generated Directory Listings (Indexing) 953
Virtual Hosts 953

Setting Up a Virtual Host 954

Types of Virtual Hosts 954

The default Virtual Host 954

Examples 954

Troubleshooting 956

Modules 957
mod_cgi and CGI Scripts 958
mod_ssl 959
Authentication Modules and .htaccess 961
Scripting Modules 962
Multiprocessing Modules (MPMs) 963

CONTENTS XXXi

webalizer: Analyzes Web Traffic 964
MRTG: Monitors Traffic Loads 964
Error Codes 964

Chapter Summary 965

Exercises 966

Advanced Exercises 966

PART VI APPENDIXES 969

APPENDIX A: REGULAR EXPRESSIONS

Characters 972
Delimiters 972
Simple Strings 972
Special Characters 972
Periods 973
Brackets 973
Asterisks 974
Carets and Dollar Signs 974
Quoting Special Characters 975
Rules 975
Longest Match Possible 975
Empty Regular Expressions 976

Bracketing Expressions 976

The Replacement String 976
Ampersand 977
Quoted Digit 977

Extended Regular Expressions 977
Appendix Summary 979

APPENDIX B: HELP 981

Solving a Problem 982

Finding Linux-Related Information 983
Documentation 983
Useful Linux Sites 984
Linux Newsgroups 985
Mailing Lists 985
Words 986
Software 986
Office Suites and Word Processors 988

Specifying a Terminal 988

971

XXXii CONTENTS

APPENDIX C: SECURITY 991

Encryption 992
Public Key Encryption 993
Symmetric Key Encryption 994
Encryption Implementation 995
GnuPG/PGP 995

File Security 997

Email Security 997
MTAs (Mail Transfer Agents) 997
MUASs (Mail User Agents) 998

Network Security 998
Network Security Solutions 999
Network Security Guidelines 999

Host Security 1001
Login Security 1002
Remote Access Security 1003
Viruses and Worms 1004
Physical Security 1004

Security Resources 1006
Appendix Summary 1009

APPENDIX D: THE FREE SOFTWARE DEFINITION 1011

APPENDIX E: THE LINUX 2.6 KERNEL 1015

Native Posix Thread Library (NPTL) 1016

IPSecurity (IPSec) 1016

Asynchronous I/O (AIO) 1016

O(1) Scheduler 1017

OProfile 1017

kksymoops 1017

Reverse Map Virtual Memory (rmap VM) 1017

HugeTLBFS: Translation Look-Aside Buffer Filesystem 1018
remap_file_pages 1018

2.6 Network Stack Features (IGMPv3, IPv6, and Others) 1018
Internet Protocol Virtual Server (IPVS) 1019

Access Control Lists (ACLs) 1019

4GB-4GB Memory Split: Physical Address Extension (PAE) 1019
Scheduler Support for HyperThreaded CPUs 1019

CONTENTS XXXiii

Block I/O (BIO) Block Layer 1019

Support for Filesystems Larger Than 2 Terabytes 1020
New I/O Elevators 1020

Interactive Scheduler Response Tuning 1020

GLOSSARY 1021
INDEX 1071

This page intentionally left blank

The book

The audience

Benefits

PREFACE

Whether you are an end user, a system administrator, or a little of both, this book
explains with step-by-step examples how to get the most out of an Ubuntu Linux
system. In 27 chapters, this book takes you from installing an Ubuntu system
through understanding its inner workings to setting up secure servers that run on
the system.

This book is designed for a wide range of readers. It does not require you to have
programming experience, although having some experience using a general-purpose
computer, such as a Windows, Macintosh, UNIX, or another Linux system is cer-
tainly helpful. This book is appropriate for

e Students who are taking a class in which they use Linux
® Home users who want to set up and/or run Linux
® Professionals who use Linux at work

¢ System administrators who need an understanding of Linux and the tools
that are available to them

¢ Computer science students who are studying the Linux operating system
¢ Technical executives who want to get a grounding in Linux

A Practical Guide to Ubuntu Linux® gives you a broad understanding of many fac-
ets of Linux, from installing Ubuntu Linux through using and customizing it. No
matter what your background, this book provides the knowledge you need to get
on with your work. You will come away from this book understanding how to use
Linux, and this book will remain a valuable reference for years to come.

XXXV

XXXVi PREFACE

Overlap

Differences

If you read A Practical Guide to Linux® Commands, Editors, and Shell Program-
ming, you will notice some overlap between that book and the one you are reading
now. The first chapter, the chapters on the utilities and the filesystem, and the
appendix on regular expressions are very similar in the two books, as are the three
chapters on the Bourne Again Shell (bash). Chapters that appear in this book but do
not appear in A Practical Guide to Linux® Commands, Editors, and Shell Program-
ming include Chapters 2 and 3 (installation), Chapters 4 and 8 (Ubuntu Linux and
the GUI), Chapter 10 (networking), all of the chapters in Part IV (system adminis-
tration) and Part V (servers), and Appendix C (security).

While this book explains how to use Linux from a graphical interface and from the
command line (a textual interface), A Practical Guide to Linux® Commands, Edi-
tors, and Shell Programming works exclusively with the command line. It includes
full chapters on the vi and emacs editors, as well as chapters on the gawk pattern
processing language and the sed stream editor. In addition, it has a command refer-
ence section that provides extensive examples of the use of more than 80 of the
most important Linux utilities. You can use these utilities to solve problems without
resorting to programming in C.

THIS BoOK INCLUDES UBUNTU GUTSY GIBBON (7.10)
ON A LIvE/INSTALL DVD

DVD features

This book includes a live/install DVD that holds the Gutsy Gibbon (7.10) release of
Ubuntu Linux. You can use this DVD to run a live Ubuntu session that displays the
GNOME desktop without making any changes to your computer: Boot from the
DVD, run an Ubuntu live session, and log off. Your system remains untouched:
When you reboot, it is exactly as it was before you ran the Ubuntu live session.
Alternatively, you can install Ubuntu from the live session. Chapter 2 helps you get
ready to install Ubuntu. Chapter 3 provides step-by-step instructions for installing
Ubuntu from this DVD. This book guides you through learning about, using, and
administrating an Ubuntu Linux session.

The included DVD incorporates all the features of the live/install Desktop CD as
well as the Alternate and Server CDs. It also includes all software packages sup-
ported by Ubuntu. You can use it to perform a graphical or textual (command line)
installation of either a graphical or a textual Ubuntu system. If you do not have an
Internet connection, you can use the DVD as a software repository and install any
supported software packages from it.

FEATURES OF THIS BOOK

This book is designed and organized so you can get the most out of it in the shortest
amount of time. You do not have to read this book straight through in page order.
Instead, once you are comfortable using Linux, you can use this book as a reference:

FEATURES OF THIS BOOK Xxxvii

Look up a topic of interest in the table of contents or index and read about it. Or
think of the book as a catalog of Linux topics: Flip through the pages until a topic
catches your eye. The book includes many pointers to Web sites where you can get
additional information: Consider the Internet an extension of this book.

A Practical Guide to Ubuntu Linux® is structured with the following features:

¢ Optional sections enable you to read the book at different levels, returning
to more difficult material when you are ready to delve into it.

¢ Caution boxes highlight procedures that can easily go wrong, giving you
guidance before you run into trouble.

Tip boxes highlight ways you can save time by doing something differently
or situations when it may be useful or just interesting to have additional
information.

Security boxes point out places where you can make a system more secure.
The security appendix presents a quick background in system security
issues.

e Concepts are illustrated by practical examples throughout the book.
¢ Chapter summaries review the important points covered in each chapter.

® Review exercises are included at the end of each chapter for readers who
want to further hone their skills. Answers to even-numbered exercises are
available at www.sobell.com.

The glossary defines more than 500 common terms.

The chapters that cover servers include JumpStart sections that get you off
to a quick start using clients and setting up servers. Once a server is up and
running, you can test and modify its configuration as explained in the rest
of the chapter.

This book provides resources for finding software on the Internet. It also
explains how to download and install software using Synaptic, aptitude,
the GNOME Add/Remove Applications window, and BitTorrent. It details
controlling automatic updates using the Update Notifier and the Update
Manager window.

This book describes in detail many important GNU tools, including the
GNOME desktop, the Nautilus File Browser, the parted and gparted parti-
tion editors, the gzip compression utility, and many command line utilities
that come from the GNU project.

e Pointers throughout the text provide help in obtaining online documenta-
tion from many sources, including the local system, the Ubuntu Web site,
and other locations on the Internet.

Many useful URLSs point to Web sites where you can obtain software,
security programs and information, and more.

¢ The comprehensive index helps you locate topics quickly and easily.

www.sobell.com

XXXViii PREFACE

KEy TopPiCcS COVERED IN THIS BOOK

This book contains a lot of information. This section distills and summarizes its
contents. In addition, “Details” (starting on page xli) describes what each chapter
covers. Finally, the table of contents provides more detail. This book:

Installation @ Describes how to download Ubuntu Linux ISO images from the Internet
and burn the Ubuntu live/install Desktop CD, the DVD, or the Ubuntu
Alternate or Server installation CD.

Helps you plan the layout of the system’s hard disk. It includes a discus-
sion of partitions, partition tables, and mount points, and assists you in
using the ubiquity or gparted graphical partitioner or the Ubuntu textual
partitioner to partition the hard disk.

Explains how to set up a dual-boot system so you can install Ubuntu
Linux on a Windows system and boot either operating system.

Describes in detail how to install Ubuntu Linux from a live/install Desktop
CD or the live/install DVD using the ubiquity graphical installer. It also
explains how to use the textual installer found on the Alternate CD, the
Server CD, and the DVD. The graphical installer is fast and easy to use.
The textual installer gives you more options and works on systems with
less RAM (system memory).

e Covers testing an Ubuntu CD/DVD for defects, setting boot command line
parameters (boot options), and creating a RAID array.

Covers the details of installing and customizing the X.org version of the
X Window System either graphically using the Screen and Graphics
Preferences window or manually with a text editor.

Workingwith ~ ® Introduces the GNOME desktop (GUI) and explains how to use desktop

Ubuntu Linux tools, including the Top and Bottom panels, panel objects, the Main menu,
object context menus, the Workspace Switcher, the Nautilus File Browser,
and the GNOME Terminal emulator.

Explains how to use the Appearance Preferences window to add and mod-
ify themes to customize your desktop to please your senses and help you
work more efficiently.

Details how to set up 3D desktop visual effects that take advantage of
Compiz Fusion.

Covers the Bourne Again Shell (bash) in three chapters, including an entire
chapter on shell programming that includes many sample shell scripts.
These chapters provide clear explanations and extensive examples of how
bash works both from the command line in day-to-day work and as a pro-
gramming language to write shell scripts.

Key Topics COVERED IN THIS BOOK XXXiX

¢ Explains the textual (command line) interface and introduces more than
30 command line utilities.

e Presents a tutorial on the vim textual editor.
¢ Covers types of networks, network protocols, and network utilities.

¢ Explains hostnames, IP addresses, and subnets, and explores how to use
host and dig to look up domain names and IP addresses on the Internet.

¢ Covers distributed computing and the client/server model.

¢ Explains how to use ACLs (Access Control Lists) to fine-tune user access
permissions.

System e Explains how to use the Ubuntu graphical and textual (command line)
administration tools to configure the display, DNS, NFS, Samba, Apache, a firewall, a
network interface, and more. You can also use these tools to add users and
manage local and remote printers.

¢ Goes into detail about using sudo to allow specific users to work with root
privileges (become Superuser) and customizing the way sudo works by
editing the sudoers configuration file. It also explains how you can unlock
the root account if necessary.

¢ Describes how to use the following tools to download and install software
to keep a system up-to-date and to install new software:

+ The Software Sources window controls which Ubuntu and third-party
software repositories Ubuntu downloads software packages from and
whether Ubuntu downloads updates automatically. You can also use
this window to cause Ubuntu to download and install security updates
automatically.

« If you do not have an Internet connection, you can use the Software
Sources window to set up the DVD included with this book as a soft-
ware repository. You can then install any software packages that
Ubuntu supports from this repository.

+ Based on how you set up updates in the Software Sources window, the
Update Notifier pops up on the desktop to let you know when soft-
ware updates are available. Click the Update Notifier to open the
Update Manager window, from which you can download and install
updates.

+ The Add/Remove Applications window provides an easy way to
select, download, and install a wide range of software packages.

+ Synaptic allows you to search for, install, and remove software pack-
ages. It gives you more ways to search for packages than does the
Add/Remove Applications window.

x|l PREFACE

Security

Clients and servers

Programming

+ APT downloads and installs software packages from the Internet (or
the included DVD), keeping a system up-to-date and resolving
dependencies as it processes the packages. You can use APT from a
graphical interface (Synaptic) or from several textual interfaces (e.g.,
aptitude and apt-get).

+ BitTorrent is a good choice for distributing large amounts of data such
as the Ubuntu installation DVD and CDs. The more people who use
BitTorrent to download a file, the faster it works.

Covers graphical system administration tools, including the many tools
available from the GNOME Main menu.

Explains system operation, including the boot process, init scripts, recov-
ery (single-user) and multiuser modes, and steps to take if the system
crashes.

Describes how to use and program the new Upstart init daemon, which
replaces the System V init daemon.

Describes files, directories, and filesystems, including types of files and file-
systems, fstab (the filesystem table), and automatically mounted filesystems,
and explains how to fine-tune and check the integrity of filesystems.

Covers backup utilities, including tar, cpio, dump, and restore.

Describes compression/archive utilities, including gzip, bzip2, compress,
and zip.

Explains how to customize and build a Linux kernel.

Helps you manage basic system security issues using ssh (secure shell),
vsftpd (secure FTP server), Apache (Web server), iptables (firewalls), and
more.

Covers using firestarter to share an Internet connection over a LAN, run a
DHCP server, and set up a basic firewall to protect the system.

Provides instructions on using iptables to share an Internet connection over
a LAN and to build advanced firewalls.

Describes how to set up a chroot jail to help protect a server system.

Explains how to use TCP wrappers to control who can access a server.

Explains how to set up and use the most popular Linux servers, providing a
chapter on each: Apache, Samba, OpenSSH, exim4, DNS, NFS, FTP, firestarter
and iptables, and NIS (all of which are supported by Ubuntu Linux).

Describes how to set up a CUPS printer server.
Describes how to set up and use a DHCP server either by itself or from firestarter.

Provides a full chapter covering shell programming using bash, including
many examples.

Key Topics COVERED IN THIS Book xli

DETAILS
Chapter 1

Part |

Part Il

Part 111

Chapter 1 presents a brief history of Linux and explains some of the features that
make it a cutting-edge operating system. The “Conventions Used in This Book”
(page 17) section details the typefaces and terminology this book uses.

Part I, “Installing Ubuntu Linux,” discusses how to install Ubuntu Linux. Chapter 2
presents an overview of the process of installing Ubuntu Linux, including hardware
requirements, downloading and burning a CD or DVD, and planning the layout of
the hard disk. Chapter 3 is a step-by-step guide to installing Ubuntu Linux from a
CD or DVD, using the graphical or textual installer. It also shows how to set up the
X Window System and customize your desktop (GUI).

Part I, “Getting Started with Ubuntu Linux,” familiarizes you with Ubuntu Linux,
covering logging in, the GUI, utilities, the filesystem, and the shell. Chapter 4 intro-
duces desktop features, including the Top and Bottom panels and the Main menu;
explains how to use the Nautilus File Browser to manage files, run programs, and
connect to FTP and HTTP servers; covers finding documentation, dealing with login
problems, and using the window manager; and presents some suggestions on where
to find documentation, including manuals, tutorials, software notes, and HOWTOs.
Chapter 5 introduces the shell command line interface, describes more than 30 use-
ful utilities, and presents a tutorial on the vim text editor. Chapter 6 discusses the
Linux hierarchical filesystem, covering files, filenames, pathnames, working with
directories, access permissions, and hard and symbolic links. Chapter 7 introduces
the Bourne Again Shell (bash) and discusses command line arguments and options,
redirecting input to and output from commands, running programs in the back-
ground, and using the shell to generate and expand filenames.

Experienced users may want to skim Part Il

If you have used a UNIX or Linux system before, you may want to skim or skip some or all of the
chapters in Part II. Part | has two sections that all readers should take a look at: “Conventions Used
in This Book” (page 17), which explains the typographic and layout conventions used in this book,
and “Where to Find Documentation” (page 124), which points out both local and remote sources
of Linux and Ubuntu documentation.

Part I, “Digging into Ubuntu Linux,” goes into more detail about working with the
system. Chapter 8 discusses the GUI (desktop) and includes a section on how to run
a graphical program on a remote system and have the display appear locally. The
section on GNOME describes several GNOME utilities, including the new Deskbar
applet, and goes into more depth about the Nautilus File Browser. Chapter 9 extends
the bash coverage from Chapter 7, explaining how to redirect error output, avoid
overwriting files, and work with job control, processes, startup files, important shell
builtin commands, parameters, shell variables, and aliases. Chapter 10 explains net-
works, network security, and the Internet and discusses types of networks, subnets,
protocols, addresses, hostnames, and various network utilities. The section on dis-
tributed computing describes the client/server model and some of the servers you can
use on a network. Chapter 11 goes into greater depth about shell programming

xlii

PREFACE

Part IV

Part V

using bash, with the discussion enhanced by extensive examples. Details of setting up
and using clients and servers are reserved until Part V.

Part IV covers system administration. Chapter 12 discusses core concepts such as
the use of sudo, working with root privileges, system operation, chroot jails, TCP
wrappers, general information about how to set up a server, DHCP, and PAM.
Chapter 13 explains the Linux filesystem, going into detail about types of files,
including special and device files; the use of fsck to verify the integrity of and repair
filesystems; and the use of tune2fs to change filesystem parameters. Chapter 14
explains how to keep a system up-to-date by downloading software from the Inter-
net and installing it, including examples of using APT programs such as aptitude,
apt-get, and apt-cache. It also covers the dpkg software packaging system and the
use of some dpkg utilities. Finally, it explains how to use BitTorrent from the com-
mand line to download files. Chapter 15 explains how to set up the CUPS printing
system so you can print on both local and remote systems. Chapter 16 details cus-
tomizing and building a Linux kernel. Chapter 17 covers additional administration
tasks, including setting up user accounts, backing up files, scheduling automated
tasks, tracking disk usage, and solving general problems. Chapter 18 explains how
to set up a local area network (LAN), including both hardware (including wireless)
and software configuration.

Part V goes into detail about setting up and running servers and connecting to them
with clients. Where appropriate, these chapters include JumpStart sections that get
you off to a quick start in using clients and setting up servers. The chapters in Part V
cover the following clients/servers:

e OpenSSH Set up an OpenSSH server and use ssh, scp, and sftp to com-
municate securely over the Internet.

® FTP Set up a vsftpd secure FTP server and use any of several FTP clients
to exchange files with the server.

e Mail Configure exim4 and use Webmail, POP3, or IMAP to retrieve
email; use SpamAssassin to combat spam.

e NIS Set up NIS to facilitate system administration of a LAN.
e NFS Share filesystems between systems on a network.
e Samba Share filesystems and printers between Windows and Linux systems.

e DNS/BIND Set up a domain nameserver to let other systems on the
Internet know the names and IP addresses of local systems they may need
to contact.

e firestarter and iptables Share a single Internet connection between systems
on a LAN, run a DHCP server, and set up a firewall to protect local systems.

e Apache Set up an HTTP server that serves Web pages that browsers can
display. This chapter includes many suggestions for increasing Apache
security.

THANKS xliii

PartVl Part VI includes appendixes on regular expressions, helpful Web sites, system secu-

rity, and free software. This part also includes an extensive glossary with more than
500 entries plus a comprehensive index.

SUPPLEMENTS

THANKS

The author’s home page (www.sobell.com) contains downloadable listings of the
longer programs from this book as well as pointers to many interesting and useful
Linux sites on the World Wide Web, a list of corrections to the book, answers to even-
numbered exercises, and a solicitation for corrections, comments, and suggestions.

First and foremost, I want to thank Mark L. Taub, Editor-in-Chief, Prentice Hall,
who provided encouragement and support through the hard parts of this project.
Mark is unique in my 25 years of book writing experience: an editor who works
with the tools I write about. Because Mark runs Ubuntu on his home computer, we
shared experiences as I wrote this book. Mark, your comments and direction are
invaluable; this book would not exist without your help. Thank you, Mark T.

Molly Sharp of ContentWorks worked with me day-by-day during production of
this book providing help, listening to my rants, and keeping everything on track.
Thanks to Jill Hobbs, Copyeditor, who made the book readable, understandable,
and consistent; and Linda Seifert, Proofreader, who made each page sparkle.

Thanks also to the folks at Prentice Hall who helped bring this book to life, espe-
cially Julie Nahil, Full-Service Production Manager, who oversaw production of
the book; John Fuller, Managing Editor, who kept the large view in check; Marie
McKinley, Marketing Manager; Noreen Regina, Editorial Assistant, who attended
to the many details involved in publishing this book, including keeping the review
team on schedule (no small task); Heather Fox, Publicist; Dan Scherf, Media
Developer; Sandra Schroeder, Design Manager; Chuti Prasertsith, Cover Designer;
and everyone else who worked behind the scenes to make this book come into
being.

I am also indebted to Denis Howe, Editor of The Free On-line Dictionary of Com-
puting (FOLDOC). Denis has graciously permitted me to use entries from his
compilation. Be sure to look at this dictionary (www.foldoc.org).

A big “thank you” to the folks who read through the drafts of the book and
made comments that caused me to refocus parts of the book where things were
not clear or were left out altogether: David Chisnall, Swansea University; Scott
Mann, Aztek Networks; Matthew Miller, Senior Systems Analyst/Administrator,
BU Linux Project, Boston University Office of Information Technology; George

www.sobell.com
www.foldoc.org

xliv PREFACE

Vish II, Senior Education Consultant, Hewlett-Packard; Thomas Achtemichuk,
Mansueto Ventures; John Dong, Ubuntu Forum Council Member/Backports
Team Leader; Scott James Remnant, Ubuntu Development Manager and Desktop
Team Leader; Daniel R. Arfsten, Pro/Engineer Drafter/Designer; Chris Cooper,
Senior Education Consultant, Hewlett-Packard Education Services; Sameer
Verma, Associate Professor of Information Systems, San Francisco State Univer-
sity; Valerie Chau, Palomar College and Programmers Guild; James Kratzer; Sean
McAllister; Nathan Eckenrode, New York Ubuntu Local Community Team;
Christer Edwards; Nicolas Merline; and Michael Price.

Thanks also to the following people who helped with my previous Linux books,
which provided a foundation for this book: Chris Karr, Northwestern University;
Jesse Keating, Fedora Project; Carsten Pfeiffer, Software Engineer and KDE Devel-
oper; Aaron Weber, Ximian; Cristof Falk, Software Developer at CritterDesign;
Steve Elgersma, Computer Science Department, Princeton University; Scott Dier,
University of Minnesota; Robert Haskins, Computer Net Works; Lars Kellogg-
Stedman, Harvard University; Jim A. Lola, Principal Systems Consultant, Priva-
teer Systems; Eric S. Raymond, Cofounder, Open Source Initiative; Scott Mann;
Randall Lechlitner, Independent Computer Consultant; Jason Wertz, Computer
Science Instructor, Montgomery County Community College; Justin Howell, Solano
Community College; Ed Sawicki, The Accelerated Learning Center; David Mercer;
Jeffrey Bianchine, Advocate, Author, Journalist; John Kennedy; and Jim Dennis,
Starshine Technical Services.

Thanks also to Dustin Puryear, Puryear Information Technology; Gabor Liptak,
Independent Consultant; Bart Schaefer, Chief Technical Officer, iPost; Michael J.
Jordan, Web Developer, Linux Online; Steven Gibson, Owner, SuperAnt.com; John
Viega, Founder and Chief Scientist, Secure Software; K. Rachael Treu, Internet
Security Analyst, Global Crossing; Kara Pritchard, K & S Pritchard Enterprises;
Glen Wiley, Capital One Finances; Karel Baloun, Senior Software Engineer, Look-
smart; Matthew Whitworth; Dameon D. Welch-Abernathy, Nokia Systems; Josh
Simon, Consultant; Stan Isaacs; and Dr. Eric H. Herrin II, Vice President, Herrin
Software Development. And thanks to Doug Hughes, long-time system designer
and administrator, who gave me a big hand with the sections on system administra-
tion, networks, the Internet, and programming.

More thanks go to consultants Lorraine Callahan and Steve Wampler; Ronald
Hiller, Graburn Technology; Charles A. Plater, Wayne State University; Bob
Palowoda; Tom Bialaski, Sun Microsystems; Roger Hartmuller, TIS Labs at Net-
work Associates; Kaowen Liu; Andy Spitzer; Rik Schneider; Jesse St. Laurent; Steve
Bellenot; Ray W. Hiltbrand; Jennifer Witham; Gert-Jan Hagenaars; and Casper Dik.

A Practical Guide to Ubuntu Linux® is based in part on two of my previous UNIX
books: UNIX System V: A Practical Guide and A Practical Guide to the UNIX Sys-
tem. Many people helped me with those books, and thanks here go to Pat Parseghian;
Dr. Kathleen Hemenway; Brian LaRose; Byron A. Jeff, Clark Atlanta University;
Charles Stross; Jeff Gitlin, Lucent Technologies; Kurt Hockenbury; Maury Bach, Intel

THANKS xlv

Israel; Peter H. Salus; Rahul Dave, University of Pennsylvania; Sean Walton, Intelligent
Algorithmic Solutions; Tim Segall, Computer Sciences Corporation; Behrouz Forouzan,
DeAnza College; Mike Keenan, Virginia Polytechnic Institute and State University;
Mike Johnson, Oregon State University; Jandelyn Plane, University of Maryland;
Arnold Robbins and Sathis Menon, Georgia Institute of Technology; Cliff Shaffer, Vir-
ginia Polytechnic Institute and State University; and Steven Stepanek, California State
University, Northridge, for reviewing the book.

I continue to be grateful to the many people who helped with the early editions of
my UNIX books. Special thanks are due to Roger Sippl, Laura King, and Roy
Harrington for introducing me to the UNIX system. My mother, Dr. Helen Sobell,
provided invaluable comments on the original manuscript at several junctures. Also,
thanks go to Isaac Rabinovitch, Professor Raphael Finkel, Professor Randolph
Bentson, Bob Greenberg, Professor Udo Pooch, Judy Ross, Dr. Robert Veroff,
Dr. Mike Denny, Joe DiMartino, Dr. John Mashey, Diane Schulz, Robert Jung, Charles
Whitaker, Don Cragun, Brian Dougherty, Dr. Robert Fish, Guy Harris, Ping Liao,
Gary Lindgren, Dr. Jarrett Rosenberg, Dr. Peter Smith, Bill Weber, Mike Bianchi,
Scooter Morris, Clarke Echols, Oliver Grillmeyer, Dr. David Korn, Dr. Scott
Weikart, and Dr. Richard Curtis.

Finally, thanks to Peter and his family for providing nourishment and a very com-
fortable place to work. I spent many hours reading the manuscript at JumpStart,
Peter’s neighborhood coffee and sandwich shop. If you are in the neighborhood
(24th & Guerrero in San Francisco), stop by and say “Hi.”

I take responsibility for any errors and omissions in this book. If you find one or
just have a comment, let me know (mgs@sobell.com) and I will fix it in the next
printing. My home page (www.sobell.com) contains a list of errors and credits those
who found them. It also offers copies of the longer scripts from the book and point-
ers to interesting Linux pages on the Internet.

Mark G. Sobell
San Francisco, California

www.sobell.com

This page intentionally left blank

IN THIS CHAPTER

Overview of Linux
Additional Features of Linux.

Conventions Used in This Book. . .

WELCOME TO LINUX

The Linux kernel was developed by Finnish undergraduate
student Linus Torvalds, who used the Internet to make the
source code immediately available to others for free. Torvalds
released Linux version 0.01 in September 1991.

The new operating system came together through a lot of hard
work. Programmers around the world were quick to extend the
kernel and develop other tools, adding functionality to match
that already found in both BSD UNIX and System V UNIX
(SVR4) as well as new functionality.

The Linux operating system, which was developed through
the cooperation of many, many people around the world, is a
product of the Internet and is a free operating system. In other
words, all the source code is free. You are free to study it,
redistribute it, and modify it. As a result, the code is available
free of cost—no charge for the software, source, documenta-
tion, or support (via newsgroups, mailing lists, and other

2 CHAPTER1 WELCOME TO LINUX

Internet resources). As the GNU Free Software Definition (reproduced in Appendix D)

puts it:
Free beer “Free software” is a matter of liberty, not price. To understand the
concept, you should think of “free” as in “free speech,” not as in
“free beer.”

THE GNU-LINUX CONNECTION

An operating system is the low-level software that schedules tasks, allocates storage,
and handles the interfaces to peripheral hardware, such as printers, disk drives, the
screen, keyboard, and mouse. An operating system has two main parts: the kernel
and the system programs. The kernel allocates machine resources—including mem-
ory, disk space, and CPU (page 1031) cycles—to all other programs that run on the
computer. The system programs perform higher-level housekeeping tasks, often act-
ing as servers in a client/server relationship. Linux is the name of the kernel that
Linus Torvalds presented to the world in 1991 and that many others have worked
on since then to enhance, stabilize, expand, and make more secure.

THE HisTORY OF GNU-LINUX

This section presents some background on the relationship between GNU and Linux.

FADE TO 1983

Richard Stallman (www.stallman.org) announced! the GNU Project for creating an
operating system, both kernel and system programs, and presented the GNU Mani-
festo,? which begins as follows:

GNU, which stands for Gnu’s Not UNIX, is the name for the com-
plete UNIX-compatible software system which I am writing so that
I can give it away free to everyone who can use it.

Some years later, Stallman added a footnote to the preceding sentence when he realized
that it was creating confusion:

The wording here was careless. The intention was that nobody
would have to pay for *permission* to use the GNU system. But
the words don’t make this clear, and people often interpret them as
saying that copies of GNU should always be distributed at little or
no charge. That was never the intent; later on, the manifesto men-
tions the possibility of companies providing the service of distribu-
tion for a profit. Subsequently I have learned to distinguish

1. www.gnu.org/gnu/initial-announcement.html

2. www.gnu.org/gnu/manifesto.html

www.stallman.org
www.gnu.org/gnu/initial-announcement.html
www.gnu.org/gnu/manifesto.html

THE GNU-LINUX CONNECTION 3

carefully between “free” in the sense of freedom and “free” in the
sense of price. Free software is software that users have the free-
dom to distribute and change. Some users may obtain copies at no
charge, while others pay to obtain copies—and if the funds help
support improving the software, so much the better. The important
thing is that everyone who has a copy has the freedom to cooperate
with others in using it.

In the manifesto, after explaining a little about the project and what has been
accomplished so far, Stallman continues:

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I
must share it with other people who like it. Software sellers want
to divide the users and conquer them, making each user agree not
to share with others. I refuse to break solidarity with other users in
this way. I cannot in good conscience sign a nondisclosure agree-
ment or a software license agreement. For years I worked within
the Artificial Intelligence Lab to resist such tendencies and other
inhospitalities, but eventually they had gone too far: I could not
remain in an institution where such things are done for me against
my will.

So that I can continue to use computers without dishonor, I have
decided to put together a sufficient body of free software so that I
will be able to get along without any software that is not free. I
have resigned from the AI Lab to deny MIT any legal excuse to
prevent me from giving GNU away.

NEXT SCENE, 1991

The GNU Project has moved well along toward its goal. Much of the GNU operat-
ing system, except for the kernel, is complete. Richard Stallman later writes:

By the early *90s we had put together the whole system aside from
the kernel (and we were also working on a kernel, the GNU Hurd,?
which runs on top of Mach*). Developing this kernel has been a lot
harder than we expected, and we are still working on finishing it.’

...[M]any believe that once Linus Torvalds finished writing the ker-
nel, his friends looked around for other free software, and for no
particular reason most everything necessary to make a UNIX-like
system was already available.

3. www.gnu.org/software/hurd/hurd.html
4. www.gnu.org/software/hurd/gnumach.html

5. www.gnu.org/software/hurd/hurd-and-linux.html

www.gnu.org/software/hurd/hurd.html
www.gnu.org/software/hurd/gnumach.html
www.gnu.org/software/hurd/hurd-and-linux.html

4 CHAPTER1 WELCOME TO LINUX

What they found was no accident—it was the GNU system. The
available free software® added up to a complete system because the
GNU Project had been working since 1984 to make one. The GNU
Manifesto had set forth the goal of developing a free UNIX-like
system, called GNU. The Initial Announcement of the GNU
Project also outlines some of the original plans for the GNU sys-
tem. By the time Linux was written, the [GNU] system was almost

finished.”

Today the GNU “operating system” runs on top of the FreeBSD (www.freebsd.org)
and NetBSD (www.netbsd.org) kernels with complete Linux binary compatibility
and on top of Hurd pre-releases and Darwin (developer.apple.com/opensource)
without this compatibility.

THE CODE IS FREE

MINIX

GPL

The tradition of free software dates back to the days when UNIX was released to
universities at nominal cost, which contributed to its portability and success. This
tradition died as UNIX was commercialized and manufacturers regarded the source
code as proprietary, making it effectively unavailable. Another problem with the
commercial versions of UNIX related to their complexity. As each manufacturer
tuned UNIX for a specific architecture, it became less portable and too unwieldy for
teaching and experimentation.

Two professors created their own stripped-down UNIX look-alikes for educational
purposes: Doug Comer created XINU and Andrew Tanenbaum created MINIX.
Linus Torvalds created Linux to counteract the shortcomings in MINIX. Every time
there was a choice between code simplicity and efficiency/features, Tanenbaum
chose simplicity (to make it easy to teach with MINIX), which meant this system
lacked many features people wanted. Linux goes in the opposite direction.

You can obtain Linux at no cost over the Internet (page 37). You can also obtain
the GNU code via the U.S. mail at a modest cost for materials and shipping. You
can support the Free Software Foundation (www.fsf.org) by buying the same
(GNU) code in higher-priced packages, and you can buy commercial packaged
releases of Linux (called distributions), such as Ubuntu Linux, that include installa-
tion instructions, software, and support.

Linux and GNU software are distributed under the terms of the GNU General Pub-
lic License (GPL, www.gnu.org/licenses/licenses.html). The GPL says you have the
right to copy, modify, and redistribute the code covered by the agreement. When
you redistribute the code, however, you must also distribute the same license with
the code, thereby making the code and the license inseparable. If you get source
code off the Internet for an accounting program that is under the GPL and then

6. See Appendix D or www.gnu.org/philosophy/free-sw.html.

7. www.gnu.org/gnu/linux-and-gnu.html

www.freebsd.org
www.netbsd.org
www.fsf.org
www.gnu.org/licenses/licenses.html
www.gnu.org/philosophy/free-sw.html
www.gnu.org/gnu/linux-and-gnu.html

THE HERITAGE OF LINUX: UNIX 5

modify that code and redistribute an executable version of the program, you must
also distribute the modified source code and the GPL agreement with it. Because
this arrangement is the reverse of the way a normal copyright works (it gives rights
instead of limiting them), it has been termed a copyleft. (This paragraph is not a
legal interpretation of the GPL; it is intended merely to give you an idea of how it
works. Refer to the GPL itself when you want to make use of it.)

HAVE FuN!

Two key words for Linux are “Have Fun!” These words pop up in prompts and doc-
umentation. The UNIX—now Linux—culture is steeped in humor that can be seen
throughout the system. For example, less is more—GNU has replaced the UNIX
paging utility named more with an improved utility named less. The utility to view
PostScript documents is named ghostscript, and one of several replacements for the vi
editor is named elvis. While machines with Intel processors have “Intel Inside” logos
on their outside, some Linux machines sport “Linux Inside” logos. And Torvalds
himself has been seen wearing a T-shirt bearing a “Linus Inside” logo.

THE LINUX 2.6 KERNEL

The Linux 2.6 kernel was released on December 17, 2003. This kernel has many
features that offer increased security and speed. Some of these features benefit end
users directly; others help developers produce better code and find problems more
quickly. See Appendix E for a description of the features introduced in the Linux
2.6 kernel.

THE HERITAGE OF LINUX: UNIX

The UNIX system was developed by researchers who needed a set of modern com-
puting tools to help them with their projects. The system allowed a group of people
working together on a project to share selected data and programs while keeping
other information private.

Universities and colleges played a major role in furthering the popularity of the
UNIX operating system through the “four-year effect.” When the UNIX operating
system became widely available in 1975, Bell Labs offered it to educational institu-
tions at nominal cost. The schools, in turn, used it in their computer science pro-
grams, ensuring that computer science students became familiar with it. Because
UNIX was such an advanced development system, the students became acclimated
to a sophisticated programming environment. As these students graduated and went
into industry, they expected to work in a similarly advanced environment. As more
of them worked their way up the ladder in the commercial world, the UNIX operat-
ing system found its way into industry.

6 CHAPTER1 WELCOME TO LINUX

In addition to introducing students to the UNIX operating system, the Computer
Systems Research Group (CSRG) at the University of California at Berkeley made
significant additions and changes to it. In fact, it made so many popular changes
that one version of the system is called the Berkeley Software Distribution (BSD) of
the UNIX system (or just Berkeley UNIX). The other major version is UNIX System
V (SVR4), which descended from versions developed and maintained by AT&T and
UNIX System Laboratories.

WHAT Is So Goob ABOUT LINUX?

Applications

Peripherals

Software

In recent years Linux has emerged as a powerful and innovative UNIX work-alike.
Its popularity is surpassing that of its UNIX predecessors. Although it mimics UNIX
in many ways, the Linux operating system departs from UNIX in several significant
ways: The Linux kernel is implemented independently of both BSD and System V,
the continuing development of Linux is taking place through the combined efforts of
many capable individuals throughout the world, and Linux puts the power of UNIX
within easy reach of both business and personal computer users. Using the Internet,
today’s skilled programmers submit additions and improvements to the operating
system to Linus Torvalds, GNU, or one of the other authors of Linux.

A rich selection of applications is available for Linux—both free and commercial—
as well as a wide variety of tools: graphical, word processing, networking, security,
administration, Web server, and many others. Large software companies have
recently seen the benefit in supporting Linux and now have on-staff programmers
whose job it is to design and code the Linux kernel, GNU, KDE, or other software
that runs on Linux. For example, IBM (www.ibm.com/linux) is a major Linux sup-
porter. Linux conforms increasingly more closely to POSIX standards, and some
distributions and parts of others meet this standard. (See “Standards” on page 9.)
These developments indicate that Linux is becoming more mainstream and is
respected as an attractive alternative to other popular operating systems.

Another aspect of Linux that appeals to users is the amazing range of peripherals that is
supported and the speed with which support for new peripherals emerges. Linux often
supports a peripheral or interface card before any company does. Unfortunately
some types of peripherals—particularly proprietary graphics cards—lag in their
support because the manufacturers do not release specifications or source code for
drivers in a timely manner, if at all.

Also important to users is the amount of software that is available—not just source
code (which needs to be compiled) but also prebuilt binaries that are easy to install
and ready to run. These include more than free software. Netscape, for example,
has been available for Linux from the start and included Java support before it was
available from many commercial vendors. Now its sibling Mozilla/Thunderbird/
Firefox is also a viable browser, mail client, and newsreader, performing many other
functions as well.

WHAT Is So Goop ABouT LINux? 7

Platforms Linux is not just for Intel-based platforms: It has been ported to and runs on the Power
PC—including Apple computers (ppclinux), Compaq’s (née Digital Equipment Corpo-
ration) Alpha-based machines, MIPS-based machines, Motorola’s 68K-based machines,
various 64-bit systems, and IBM’s $/390. Nor is Linux just for single-processor
machines: As of version 2.0, it runs on multiple-processor machines (SMPs). It also
includes an O(1) scheduler, which dramatically increases scalability on SMP systems.

Emulators Linux supports programs, called emulators, that run code intended for other operat-
ing systems. By using emulators you can run some DOS, Windows, and Macintosh
programs under Linux. For example, Wine (www.winehq.com) is an open-source
implementation of the Windows API on top of the X Window System and
UNIX/Linux; QEMU (fabrice.bellard.free.fr/gemu) is a CPU-only emulator that
executes x86 Linux binaries on non-x86 Linux systems.

Xen Xen, which was created at the University of Cambridge and is now being developed
in the open-source community, is an open-source virtual machine monitor (VMM). A
VMM enables several virtual machines (VMs), each running an instance of a separate
operating system, to run on a single computer. Xen isolates the VMs so that if one
crashes it does not affect the others. In addition, Xen introduces minimal performance
overhead when compared with running each of the operating systems natively.

Using VM, you can experiment with cutting-edge releases of operating systems and
applications without concern for the base (stable) system, all on a single machine.
You can also set up and test networks of systems on a single machine. Xen presents
a sandbox, an area (system) that you can work in without regard for the results of
your work or for the need to clean up.

The Gutsy release of Ubuntu supports Xen 3.1. This book does not cover the
installation or use of Xen. See help.ubuntu.com/community/Xen for information
on running Xen under Ubuntu.

For more information on Xen, refer to the wiki at wiki.xensource.com/xenwiki and
the Xen home page at www.cl.cam.ac.uk/research/srg/netos/xen.

KVM and VirtualBox If you want to run a virtual instance of Windows, you may want to investigate
KVM (Kernel Virtual Machine, help.ubuntu.com/community/KVM) and VirtualBox
(www.virtualbox.org).

WHY LINUX IS POPULAR WITH HARDWARE COMPANIES
AND DEVELOPERS

Two trends in the computer industry set the stage for the growing popularity of
UNIX and Linux. First, advances in hardware technology created the need for an
operating system that could take advantage of available hardware power. In the
mid-1970s, minicomputers began challenging the large mainframe computers
because, in many applications, minicomputers could perform the same functions
less expensively. More recently, powerful 64-bit processor chips, plentiful and inex-
pensive memory, and lower-priced hard disk storage have allowed hardware com-
panies to install multiuser operating systems on desktop computers.

www.cl.cam.ac.uk/research/srg/netos/xen
www.virtualbox.org

8 CHAPTER1 WELCOME TO LINUX

Proprietary
operating systems

Generic operating
systems

Second, with the cost of hardware continually dropping, hardware manufacturers
could no longer afford to develop and support proprietary operating systems. A
proprietary operating system is one that is written and owned by the manufacturer
of the hardware (for example, DEC/Compaq owns VMS). Today’s manufacturers
need a generic operating system that they can easily adapt to their machines.

A generic operating system is written outside of the company manufacturing the
hardware and is sold (UNIX, Windows) or given (Linux) to the manufacturer.
Linux is a generic operating system because it runs on different types of hardware
produced by different manufacturers. Of course, if manufacturers can pay only for
development and avoid per-unit costs (as they have to pay to Microsoft for each
copy of Windows they sell), manufacturers are much better off. In turn, software
developers need to keep the prices of their products down; they cannot afford to
convert their products to run under many different proprietary operating systems.
Like hardware manufacturers, software developers need a generic operating system.

Although the UNIX system once met the needs of hardware companies and
researchers for a generic operating system, over time it has become more propri-
etary as manufacturers added support for their own specialized features and intro-
duced new software libraries and utilities.

Linux emerged to serve both needs: It is a generic operating system that takes
advantage of available hardware power.

LINUX IS PORTABLE

A portable operating system is one that can run on many different machines. More
than 95 percent of the Linux operating system is written in the C programming lan-
guage, and C is portable because it is written in a higher-level, machine-independent
language. (The C compiler is written in C.)

Because Linux is portable, it can be adapted (ported) to different machines and can
meet special requirements. For example, Linux is used in embedded computers,
such as the ones found in cellphones, PDAs, and the cable boxes on top of many
TVs. The file structure takes full advantage of large, fast hard disks. Equally impor-
tant, Linux was originally designed as a multiuser operating system—it was not
modified to serve several users as an afterthought. Sharing the computer’s power
among many users and giving them the ability to share data and programs are cen-
tral features of the system.

Because it is adaptable and takes advantage of available hardware, Linux runs on
many different microprocessor-based systems as well as mainframes. The popularity
of the microprocessor-based hardware drives Linux; these microcomputers are get-
ting faster all the time, at about the same price point. Linux on a fast microcom-
puter has become good enough to displace workstations on many desktops. Linux
benefits both users, who do not like having to learn a new operating system for each
vendor’s hardware, and system administrators, who like having a consistent soft-
ware environment.

WHAT Is So Goobp ABouT LINux? 9

The advent of a standard operating system has aided the development of the soft-
ware industry. Now software manufacturers can afford to make one version of a
product available on machines from different manufacturers.

STANDARDS

Individuals from companies throughout the computer industry have joined together
to develop the POSIX (Portable Operating System Interface for Computer Environ-
ments) standard, which is based largely on the UNIX System V Interface Definition
(SVID) and other earlier standardization efforts. These efforts have been spurred by
the U.S. government, which needs a standard computing environment to minimize
its training and procurement costs. Now that these standards are gaining accep-
tance, software developers are able to develop applications that run on all conform-
ing versions of UNIX, Linux, and other operating systems.

THE C PROGRAMMING LANGUAGE

Ken Thompson wrote the UNIX operating system in 1969 in PDP-7 assembly lan-
guage. Assembly language is machine dependent: Programs written in assembly
language work on only one machine or, at best, on one family of machines. The
original UNIX operating system therefore could not easily be transported to run on
other machines (it was not portable).

To make UNIX portable, Thompson developed the B programming language, a
machine-independent language, from the BCPL language. Dennis Ritchie developed
the C programming language by modifying B and, with Thompson, rewrote UNIX
in C in 1973. The revised operating system could be transported more easily to run
on other machines.

That development marked the start of C. Its roots reveal some of the reasons why it
is such a powerful tool. C can be used to write machine-independent programs. A
programmer who designs a program to be portable can easily move it to any com-
puter that has a C compiler. C is also designed to compile into very efficient code.
With the advent of C, a programmer no longer had to resort to assembly language
to get code that would run well (that is, quickly—although an assembler will always
generate more efficient code than a high-level language).

C is a good systems language. You can write a compiler or an operating system in C.
It is highly structured but is not necessarily a high-level language. C allows a program-
mer to manipulate bits and bytes, as is necessary when writing an operating system.
But it also has high-level constructs that allow for efficient, modular programming.

In the late 1980s the American National Standards Institute (ANSI) defined a stan-
dard version of the C language, commonly referred to as ANSI C or C89 (for the
year the standard was published). Ten years later the C99 standard was published;
it is mostly supported by the GNU Project’s C compiler (named gcc). The original
version of the language is often referred to as Kernighan & Ritchie (or K&R) C,
named for the authors of the book that first described the C language.

10 CHAPTER1 WELCOME TO LINUX

Another researcher at Bell Labs, Bjarne Stroustrup, created an object-oriented pro-
gramming language named C++, which is built on the foundation of C. Because
object-oriented programming is desired by many employers today, C++ is preferred
over C in many environments. Another language of choice is Objective-C, which
was used to write the first Web browser. The GNU Project’s C compiler supports C,
C++, and Objective-C.

UBUNTU LINUX

From its first release in October 2004, Ubuntu has been a community-oriented
project. Ubuntu maintains several structures to keep it functioning effectively, with
community members invited to participate in all structures. For more information
about Ubuntu governance, see www.ubuntu.com/community/processes/governance.

Ubuntu Linux, which is sponsored by Canonical Ltd. (www.canonical.com), is
based on the Debian Linux and focuses on enhancing usability, accessibility, and
internationalization. Although Ubuntu initially targeted the desktop user, recent
releases have put increasing emphasis on the server market. With a new release
scheduled every six months, Ubuntu provides cutting-edge software.

An Ubuntu system uses the GNOME desktop manager (www.gnome.org) and
includes the OpenOffice.org suite of productivity tools, the Firefox Web browser,
the Pidgin (formerly Gaim) IM client, and an assortment of tools and games. To
keep software on a system up-to-date, Ubuntu uses Debian’s deb package format
and various APT-based tools. Ubuntu distributes and supports many versions of its
Linux distribution. For example, Kubuntu (www.kubuntu.org) runs the KDE desk-
top manager, Edubuntu (www.edubuntu.org) includes many school-related applica-
tions, and Xubuntu (www.xubuntu.org) runs the lightweight Xfce desktop, which
makes it ideal for older, slower machines. For more information about Ubuntu, see
www.ubuntu.com/aboutus/faq.

OVERVIEW OF LINUX

The Linux operating system has many unique and powerful features. Like other
operating systems, it is a control program for computers. But like UNIX, it is also a
well-thought-out family of utility programs (Figure 1-1) and a set of tools that
allow users to connect and use these utilities to build systems and applications.

LINuX HAS A KERNEL PROGRAMMING INTERFACE

The Linux kernel—the heart of the Linux operating system—is responsible for allo-
cating the computer’s resources and scheduling user jobs so that each one gets its
fair share of system resources, including access to the CPU; peripheral devices, such
as hard disk, DVD, and CD-ROM storage; printers; and tape drives. Programs
interact with the kernel through system calls, special functions with well-known
names. A programmer can use a single system call to interact with many kinds of

www.ubuntu.com/community/processes/governance
www.canonical.com
www.gnome.org
www.ubuntu.com/aboutus/faq

OVERVIEW OF LINUX 11

Database Mail and

i Management UL Message
Compilers g PrOCeSSOrs B _9 Shells

Systems Facilities

Linux Kernel

Hardware

Figure 1-1 A layered view of the Linux operating system

devices. For example, there is one write() system call, not many device-specific ones.
When a program issues a write() request, the kernel interprets the context and
passes the request to the appropriate device. This flexibility allows old utilities to
work with devices that did not exist when the utilities were written. It also makes it
possible to move programs to new versions of the operating system without rewrit-
ing them (provided that the new version recognizes the same system calls). See
page 1015 for information on the Linux 2.6 kernel.

LINUX CAN SUPPORT MANY USERS

Depending on the hardware and the types of tasks that the computer performs, a
Linux system can support from 1 to more than 1,000 users, each concurrently run-
ning a different set of programs. The per-user cost of a computer that can be used
by many people at the same time is less than that of a computer that can be used by
only a single person at a time. It is less because one person cannot generally take
advantage of all the resources a computer has to offer. That is, no one can keep all
the printers going constantly, keep all the system memory in use, keep all the disks
busy reading and writing, keep the Internet connection in use, and keep all the ter-
minals busy at the same time. By contrast, a multiuser operating system allows
many people to use all of the system resources almost simultaneously. The use of
costly resources can be maximized and the cost per user can be minimized—the pri-
mary objectives of a multiuser operating system.

LiNux CAN RUN MANY TASKS

Linux is a fully protected multitasking operating system, allowing each user to run
more than one job at a time. Processes can communicate with one another but
remain fully protected from one another, just as the kernel remains protected from
all processes. You can run several jobs in the background while giving all your
attention to the job being displayed on the screen, and you can switch back and
forth between jobs. If you are running the X Window System (page 15), you can
run different programs in different windows on the same screen and watch all of
them. This capability ensures that users can be more productive.

12 CHAPTER1 WELCOME TO LINUX

LINUX PROVIDES A SECURE HIERARCHICAL FILESYSTEM

A file is a collection of information, such as text for a memo or report, an accumu-
lation of sales figures, an image, a song, or an executable program. Each file is
stored under a unique identifier on a storage device, such as a hard disk. The Linux
filesystem provides a structure whereby files are arranged under directories, which
are like folders or boxes. Each directory has a name and can hold other files and
directories. Directories, in turn, are arranged under other directories, and so forth,
in a treelike organization. This structure helps users keep track of large numbers of
files by grouping related files in directories. Each user has one primary directory
and as many subdirectories as required (Figure 1-2).

Standards With the idea of making life easier for system administrators and software develop-
ers, a group got together over the Internet and developed the Linux Filesystem Stan-
dard (FSSTND), which has since evolved into the Linux Filesystem Hierarchy
Standard (FHS). Before this standard was adopted, key programs were located in
different places in different Linux distributions. Today you can sit down at a Linux
system and know where to expect to find any given standard program (page 194).

Links A link allows a given file to be accessed by means of two or more names. The alter-
native names can be located in the same directory as the original file or in another
directory. Links can make the same file appear in several users’ directories, enabling
those users to share the file easily. Windows uses the term shortcut in place of link
to describe this capability. Macintosh users will be more familiar with the term
alias. Under Linux, an alias is different from a link; it is a command macro feature
provided by the shell (page 328).

Security Like most multiuser operating systems, Linux allows users to protect their data from
access by other users. It also allows users to share selected data and programs with cer-
tain other users by means of a simple but effective protection scheme. This level of secu-
rity is provided by file access permissions, which limit which users can read from, write
to, or execute a file. More recently, Linux has implemented Access Control Lists (ACLs),
which give users and administrators finer-grained control over file access permissions.

THE SHELL: COMMAND INTERPRETER AND
PROGRAMMING LANGUAGE

In a textual environment, the shell—the command interpreter—acts as an interface
between you and the operating system. When you enter a command on the screen,
the shell interprets the command and calls the program you want. A number of
shells are available for Linux. The three most popular shells are

® The Bourne Again Shell (bash), an enhanced version of the original Bourne
Shell (the original UNIX shell).

e The TC Shell (icsh), an enhanced version of the C Shell, developed as part
of BSD UNIX.

® The Z Shell (zsh), which incorporates features from a number of shells,
including the Korn Shell.

OVERVIEW OF LINUX 13

Shell scripts

Wildcards and
ambiguous file
references

Redirection

‘ report ‘ ‘ log l

Figure 1-2 The Linux filesystem structure

Because different users may prefer different shells, multiuser systems can have sev-
eral different shells in use at any given time. The choice of shells demonstrates one
of the advantages of the Linux operating system: the ability to provide a customized
interface for each user.

Besides performing its function of interpreting commands from a keyboard and send-
ing those commands to the operating system, the shell is a high-level programming
language. Shell commands can be arranged in a file for later execution (Linux calls
these files shell scripts; Windows calls them batch files). This flexibility allows users
to perform complex operations with relative ease, often with rather short commands,
or to build with surprisingly little effort elaborate programs that perform highly com-
plex operations.

FILENAME GENERATION

When you type commands to be processed by the shell, you can construct patterns
using characters that have special meanings to the shell. These characters are
called wildcard characters. The patterns, which are called ambiguous file refer-
ences, are a kind of shorthand: Rather than typing in complete filenames, users
can type patterns; the shell expands these patterns into matching filenames. An
ambiguous file reference can save you the effort of typing in a long filename or a
long series of similar filenames. For example, the shell might expand the pattern
mak* to make-3.80.tar.gz. Patterns can also be useful when you know only part
of a filename or cannot remember the exact spelling.

DEVICE-INDEPENDENT INPUT AND OUTPUT

Devices (such as a printer or a terminal) and disk files appear as files to Linux pro-
grams. When you give a command to the Linux operating system, you can instruct
it to send the output to any one of several devices or files. This diversion is called
output redirection.

14 CHAPTER1 WELCOME TO LINUX

Device In a similar manner, a program’s input that normally comes from a keyboard can be
independence redirected so that it comes from a disk file instead. Input and output are device
independent; that is, they can be redirected to or from any appropriate device.

As an example, the cat utility normally displays the contents of a file on the screen.
When you run a cat command, you can easily cause its output to go to a disk file
instead of the screen.

SHELL FUNCTIONS

One of the most important features of the shell is that users can use it as a programming
language. Because the shell is an interpreter, it does not compile programs written for it
but rather interprets programs each time they are loaded from the disk. Loading and
interpreting programs can be time-consuming.

Many shells, including the Bourne Again Shell, include shell functions that the shell
holds in memory so it does not have to read them from the disk each time you exe-
cute them. The shell also keeps functions in an internal format so that it does not
have to spend as much time interpreting them.

JoB CONTROL

Job conirol is a shell feature that allows users to work on several jobs at once,
switching back and forth between them as desired. When you start a job, it is fre-
quently run in the foreground so it is connected to the terminal. Using job control,
you can move the job you are working with into the background and continue run-
ning it there while working on or observing another job in the foreground. If a
background job then needs your attention, you can move it into the foreground so
that it is once again attached to the terminal. The concept of job control originated
with BSD UNIX, where it appeared in the C Shell.

A LARGE COLLECTION OF USEFUL UTILITIES

Linux includes a family of several hundred utility programs, often referred to as
commands. These utilities perform functions that are universally required by users.
The sort utility, for example, puts lists (or groups of lists) in alphabetical or numeri-
cal order and can be used to sort lists by part number, last name, city, ZIP code, tele-
phone number, age, size, cost, and so forth. The sort utility is an important
programming tool and is part of the standard Linux system. Other utilities allow
users to create, display, print, copy, search, and delete files as well as to edit, format,
and typeset text. The man (for manual) and info utilities provide online documenta-
tion for Linux itself.

INTERPROCESS COMMUNICATION

Pipes and filters Linux allows users to establish both pipes and filters on the command line. A pipe
sends the output of one program to another program as input. A filter is a special

ADDITIONAL FEATURES OF LINUX 15

kind of pipe that processes a stream of input data to yield a stream of output data.
A filter processes another program’s output, altering it as a result. The filter’s output
then becomes input to another program.

Pipes and filters frequently join utilities to perform a specific task. For example, you
can use a pipe to send the output of the cat utility to sort (a filter) and then use
another pipe to send the output of sort to a third utility, Ipr, that sends the data to a
printer. Thus, in one command line, you can use three utilities together to sort and
print a file.

SYSTEM ADMINISTRATION

On a Linux system the system administrator is frequently the owner and only user
of the system. This person has many responsibilities. The first responsibility may be
to set up the system and install the software. Once the system is up and running, the
system administrator is responsible for downloading and installing software
(including upgrading the operating system), backing up and restoring files, and
managing such system facilities as printers, terminals, servers, and a local network.
The system administrator is also responsible for setting up accounts for new users
on a multiuser system, bringing the system up and down as needed, and taking care
of any problems that arise.

ADDITIONAL FEATURES OF LINUX

The developers of Linux included features from BSD, System V, and Sun Microsys-
tems’ Solaris, as well as new features, in their operating system. Although most of
the tools found on UNIX exist for Linux, in some cases these tools have been
replaced by more modern counterparts. This section describes some of the popular
tools and features available under Linux.

GUIs: GRAPHICAL USER INTERFACES

Desktop manager

The X Window System (also called X or X11) was developed in part by researchers
at MIT (Massachusetts Institute of Technology) and provides the foundation for the
GUIs available with Linux. Given a terminal or workstation screen that supports X,
a user can interact with the computer through multiple windows on the screen, dis-
play graphical information, or use special-purpose applications to draw pictures,
monitor processes, or preview formatted output. X is an across-the-network proto-
col that allows a user to open a window on a workstation or computer system that
is remote from the CPU generating the window.

Usually two layers run under X: a desktop manager and a window manager. A
desktop manager is a picture-oriented user interface that enables you to interact
with system programs by manipulating icons instead of typing the corresponding

16 CHAPTER1 WELCOME TO LINUX

Window manager

Y s Places Sy @ o Live sassion user o & % Fri Nov 16, 1:20 AM [¥]
@ Welcome Lo Ubuntu 7.10! - Mozilla Firefox ~ || o] % [pkjack - Vegas Strip o] x
File Edit View History Bookmarks Tools Help Contrel Help
. < [fle:/fjusr/share/ubur [« b [Cl-
#®Getting Started [l Latest BBC Headli...
Zub
4 ubuntu
o
e Ubuntu Help Center o] x
File Edit Go Bookmarks Help
Welcome to Ubuntu 7.10! -
- s -
the Ubuntu project { Desktop - Flle Browser Help Topics
phy:| Eile Edit View Go Bookmarks =
Py Ubuntu Help Center
in their local | U;’J
freedom to ¢ = Topics
way thery need. | = | 1 |'_::Daskmp = 100% P Welcome to the Ubuntu Help
. = : New to Ubuntu? Center
Getting Help aces - o)) _
Adding and Removing To find help, insert a keyword in the
Done “6 ubuntu | =i Software search bar
= Desktop Examples 4 TRERY
- Files, Folders and
- File System :- Documents
- Floj Dri —
e A Customising Your
& Trash Install Desktop (@
) | Histery: & Choose action
i Documents Internet | File Edit
=i Muesie To run a command as administrator {user "root"}, use
. See "man sudo_root” for details.
=i Pictures i
v he ubuntugubuntu:~% xeyes & xclock
2 items, Fres space; 487.7 MB [1] 8334
3 @ Ubunt.. & Welco.. 1 Blackj.. & ubunt.. M xeyes ®© xclock w Desklo.. | @ Deskb.. | s

Figure 1-3 A GNOME workspace

commands to a shell. Ubuntu runs GNOME (Figure 1-3; www.gnome.org) by
default, but it can also run KDE (www.kde.org) and a number of other desktop
managers.

A window manager is a program that runs under the desktop manager and allows
you to open and close windows, run programs, and set up a mouse so it has different
effects depending on how and where you click. The window manager also gives the
screen its personality. Whereas Microsoft Windows allows you to change the color
of key elements in a window, a window manager under X allows you to customize
the overall look and feel of the screen: You can change the way a window looks and
works (by giving it different borders, buttons, and scrollbars), set up virtual desk-
tops, create menus, and more.

Several popular window managers run under X and Linux. Ubuntu Linux provides
both Metacity (the default under GNOME) and kwin (the default under KDE).
Other window managers, such as Sawfish and WindowMaker, are also available.
Chapters 4 and 8 present information on GUIs.

(INTER)NETWORKING UTILITIES

Linux network support includes many utilities that enable you to access remote
systems over a variety of networks. In addition to sending email to users on other
systems, you can access files on disks mounted on other computers as if they were
located on the local system, make your files available to other systems in a similar

www.gnome.org
www.kde.org

CONVENTIONS USED IN THIS Book 17

manner, copy files back and forth, run programs on remote systems while display-
ing the results on the local system, and perform many other operations across local
area networks (LANs) and wide area networks (WANSs), including the Internet.

Layered on top of this network access is a wide range of application programs that
extend the computer’s resources around the globe. You can carry on conversations
with people throughout the world, gather information on a wide variety of subjects,
and download new software over the Internet quickly and reliably. Chapter 10 dis-
cusses networks, the Internet, and the Linux network facilities.

SOFTWARE DEVELOPMENT

One of Linux’s most impressive strengths is its rich software development environ-
ment. You can find compilers and interpreters for many computer languages. Besides
C and C++, languages available for Linux include Ada, Fortran, Java, Lisp, Pascal,
Perl, and Python. The bison utility generates parsing code that makes it easier to
write programs to build compilers (tools that parse files containing structured infor-
mation). The flex utility generates scanners (code that recognizes lexical patterns in
text). The make utility and the GNU Configure and Build System make it easier to
manage complex development projects. Source code management systems, such as
CVS, simplify version control. Several debuggers, including ups and gdb, can help
track down and repair software defects. The GNU C compiler (gcc) works with the
gprof profiling utility to help programmers identify potential bottlenecks in a pro-
gram’s performance. The C compiler includes options to perform extensive checking
of C code, thereby making the code more portable and reducing debugging time.
Table B-4 on page 987 lists some sites you can download software from.

CONVENTIONS USED IN THIS BOOK

Widgets

Tabs and frames

Menu selection path

This book uses conventions to make its explanations shorter and clearer. The fol-
lowing paragraphs describe these conventions.

A widget is a simple graphical element that a user interacts with, such as a text box,
radio button, or combo box. When referring to a widget, this book specifies the
type of widget and its label. The term “tick” refers to the mark you put in a check
box, sometimes called a check mark. For example, “put a tick in the check box
labeled Run in terminal (click the box to put a tick in it; click again to remove the
tick).” See the glossary for definitions of various widgets.

Tabs allow windows to display sets of related information, one set at a time. For
example, Figure 4-11 on page 102 shows the Appearance Preferences window,
which has five tabs; the Background tab is highlighted. A frame isolates a set of
information within a window. Figure 4-11 shows the Wallpaper frame, which
allows you to select one of several wallpapers.

The menu selection path is the name of the menu or the location of the menu, fol-
lowed by a colon, a SPACE, and the menu selections separated by & markers. The entire

18 CHAPTER1 WELCOME TO LINUX

Text and examples

Items you enter

Utility names

Filenames

Character strings

Buttons and labels

Keys and characters

menu selection path is in bold type. You can read Main menu: System= Preferences=
Appearance as “From the Main menu, select System; from System, select Preferences;
and then select Appearance.”

The text is set in this type, whereas examples are shown in a monospaced font (also
called a fixed-width font):

$ cat practice
This is a small file I created
with a text editor.

Everything you enter at the keyboard is shown in a bold typeface. Within the text,
this bold typeface is used; within examples and screens, this one is used. In the pre-
vious example, the dollar sign ($) on the first line is a prompt that Linux displays, so
it is not bold; the remainder of the first line is entered by a user, so it is bold.

Names of utilities are printed in this bold sans serif typeface. This book references the
emacs text editor and the Is utility or Is command (or just Is) but instructs you to
enter Is —a on the command line. In this way the text distinguishes between utilities,
which are programs, and the instructions you give on the command line to invoke
the utilities.

Filenames appear in a bold typeface. Examples are memoS5, letter.1283, and reports.
Filenames may include uppercase and lowercase letters; however, Linux is case sen-
sitive (page 1027), so memo5, MEMOS, and Memo5 name three different files.

Within the text, characters and character strings are marked by putting them in a
bold typeface. This convention avoids the need for quotation marks or other delim-
iters before and after a string. An example is the following string, which is displayed
by the passwd utility: Sorry, passwords do not match.

Words appear in a bold typeface in the sections of the book that describe a GUI.
This font indicates that you can click a mouse button when the mouse pointer is
over these words on the screen or over a button with this name: Click Next.

This book uses SMALL CAPS for three kinds of items:
e Keyboard keys, such as the SPACE bar and the RETURN,® ESCAPE, and TAB keys.
® The characters that keys generate, such as the SPACEs generated by the SPACE bar.

® Keyboard keys that you press with the CONTROL key, such as CONTROL-D. (Even
though D is shown as an uppercase letter, you do not have to press the SHIFT
key; enter CONTROL-D by holding the CONTROL key down and pressing d.)

8. Different keyboards use different keys to move the cursor (page 1032) to the beginning of the next line.
This book always refers to the key that ends a line as the RETURN key. Your keyboard may have a RET, NEWLINE,
ENTER, RETURN, or other key. Use the corresponding key on your keyboard each time this book asks you to
press RETURN.

CONVENTIONS USED IN THIS Book 19

Prompts and
RETURNSs

Definitions

optional

URLs (Web
addresses)

Tip, caution, and
security boxes

Most examples include the shell prompit—the signal that Linux is waiting for a
command—as a dollar sign ($), a pound sign (#), or sometimes a percent sign (%).
The prompt is not in a bold typeface because you do not enter it. Do not type the
prompt on the keyboard when you are experimenting with examples from this
book. If you do, the examples will not work.

Examples omit the RETURN keystroke that you must use to execute them. An example
of a command line is

$ vim memo.1204

To use this example as a model for running the vim text editor, give the command
vim memo.1204 and press the RETURN key. (Press ESCAPE ZZ to exit from vim; see
page 172 for a vim tutorial.) This method of entering commands makes the exam-
ples in the book correspond to what appears on the screen.

All glossary entries marked with fowoc are courtesy of Denis Howe, editor of the Free
Online Dictionary of Computing (foldoc.org), and are used with permission. This
site is an ongoing work containing definitions, anecdotes, and trivia.

OPTIONAL INFORMATION

Passages marked as optional appear in a gray box. This material is not central to
the ideas presented in the chapter but often involves more challenging concepts. A
good strategy when reading a chapter is to skip the optional sections and then
return to them when you are comfortable with the main ideas presented in the chap-
ter. This is an optional paragraph.

Web addresses, or URLs, have an implicit http:// prefix, unless ftp:// or https:// is
shown. You do not normally need to specify a prefix when the prefix is http://, but
you must use a prefix from a browser when you specify an FIP or secure HTTP site.
Thus you can specify a URL in a browser exactly as shown in this book.

The following boxes highlight information that may be helpful while you are using
or administrating a Linux system.

This is a tip box
Atip box may help you avoid repeating a common mistake or may point toward additional information.

This box warns you about something
A caution box warns you about a potential pitfall.

This box marks a security note

A security box highlights a potential security issue. These notes are usually for system adminis-
trators, but some apply to all users.

20 CHAPTER1 WELCOME TO LINUX

CHAPTER SUMMARY

The Linux operating system grew out of the UNIX heritage to become a popular
alternative to traditional systems (that is, Windows) available for microcomputer
(PC) hardware. UNIX users will find a familiar environment in Linux. Distributions
of Linux contain the expected complement of UNIX utilities, contributed by pro-
grammers around the world, including the set of tools developed as part of the GNU
Project. The Linux community is committed to the continued development of this
system. Support for new microcomputer devices and features is added soon after the
hardware becomes available, and the tools available on Linux continue to be refined.
Given the many commercial software packages available to run on Linux platforms
and the many hardware manufacturers offering Linux on their systems, it is clear
that the system has evolved well beyond its origin as an undergraduate project to
become an operating system of choice for academic, commercial, professional, and
personal use.

EXERCISES

1. What is free software? List three characteristics of free software.
2. Why is Linux popular? Why is it popular in academia?

3. What are multiuser systems? Why are they successful?
4

. What is the Free Software Foundation/GNU? What is Linux? Which parts
of the Linux operating system did each provide? Who else has helped build
and refine this operating system?

5. In which language is Linux written? What does the language have to do
with the success of Linux?

. What is a utility program?
. What is a shell? How does it work with the kernel? With the user?

How can you use utility programs and a shell to create your own applications?

O o N A

. Why is the Linux filesystem referred to as hierarchical?

10. What is the difference between a multiprocessor and a multiprocessing
system?

11. Give an example of when you would want to use a multiprocessing
system.

12. Approximately how many people wrote Linux? Why is this project
unique?

13. What are the key terms of the GNU General Public License?

PART |

INSTALLING UBUNTU LINUX

CHAPTER 2
INSTALLATION OVERVIEW 23

CHAPTER 3
STEP-BY-STEP INSTALLATION 45

21

This page intentionally left blank

IN THIS CHAPTER

More Information
Planning the Installation
Setting Up the Hard Disk
LVM: Logical Volume Manager. ...
The Installation Process

Downloading and Burning
aCD/DVD......coiiiiinn.

Using BitTorrent

Gathering Information About
the System..................

INSTALLATION
OVERVIEW

Installing Ubuntu Linux is the process of copying operating sys-
tem files from a CD or DVD to hard drive(s) on a system and
setting up configuration files so that Linux runs properly on the
hardware. Several types of installations are possible, including
fresh installations, upgrades from older releases of Ubuntu
Linux, and dual-boot installations.

This chapter discusses the installation process in general: planning,
partitioning the hard disk, obtaining the files for the installation,
burning a CD or a DVD, and collecting information about the
hardware that may be helpful for installation and administration.
Chapter 3 covers the process of installing Ubuntu.

The ubiquity utility is a user-friendly, graphical tool that installs
Ubuntu. To install Ubuntu Linux on standard hardware, you can
typically insert the live/install Desktop CD or DVD, boot the sys-
tem, and double-click Install. After you answer a few questions,
you are done. However, you may want to customize the system
or you may be installing on nonstandard hardware: the installer
gives you choices as the installation process unfolds. Ubuntu also
provides a textual installer that gives you more control over the

23

24 CHAPTER 2

INSTALLATION OVERVIEW

installation. Refer to “Basic Installation from the Live/Install Desktop CD/DVD?”
(page 46) and “Advanced Installation” (page 62) for information about installing and
customizing Ubuntu Linux.

THE LIve/INSTALL DEskTOP CD/DVD

A live/install Desktop CD/DVD runs Ubuntu without installing it on the system.
When you boot a live/install Desktop CD/DVD, it brings up a GNOME desktop:
You are running a live session. When you exit from the live session, the system is as
it was before you booted from the CD/DVD. If the system has a swap partition
(most Linux systems have one; see page 32), the live session uses it to improve its
performance but does not otherwise write to the hard disk. You can also install
Ubuntu from a live session.

Booting a live/install Desktop CD/DVD is a good way to test hardware and fix a
system that will not boot from the hard disk. A live session is ideal for people who
are new to Ubuntu or Linux and want to experiment with Ubuntu but are not ready
to install Ubuntu on their system.

MORE INFORMATION

Web

Download Ubuntu

In addition to the following references, see “Where to Find Documentation” on
page 124 and refer to Appendix B for additional resources.

memtest86+ www.memtest.org

gparted (GNOME Partition Editor) gparted.sourceforge.net

Hardware compatibility wiki.ubuntu.com/HardwareSupport

Swap space help.ubuntu.com/community/SwapFaq

Partition HOWTO tldp.org/ HOWTO/Partition

Upgrading www.ubuntu.com/getubuntu/upgrading

Boot command line parameters help.ubuntu.com/community/BootOptions and
The Linux BootPrompt-HowTo

RAID en.wikipedia.org/wiki/RAID

LVM Resource Page (includes many links) sourceware.org/lvm2

LVM HOWTO www.tldp.org/HOWTO/LVM-HOWTO

BitTorrent help.ubuntu.com/community/BitTorrent

BitTorrent azureus.sourceforge.net

X.org release information wiki.x.org

Easiest download ~www.ubuntu.com/getubuntu

Released versions releases.ubuntu.com

Older versions old-releases.ubuntu.com/releases

Development images and unsupported releases cdimage.ubuntu.com
Mac (PowerPC) wiki.ubuntu.com/PowerPCDownloads

BitTorrent torrent files torrent.ubuntu.com/releases

www.memtest.org
www.ubuntu.com/getubuntu/upgrading
www.tldp.org/HOWTO/LVM-HOWTO
www.ubuntu.com/getubuntu

PLANNING THE INSTALLATION 25

PLANNING THE INSTALLATION

The major decision when planning an installation is determining how to divide the
hard disk into partitions or, in the case of a dual-boot system, where to put the
Linux partitions. Once you have installed Ubuntu, you can decide which software
packages you want to add to the base system (or whether you want to remove
some). In addition to these topics, this section discusses hardware requirements for
Ubuntu Linux and fresh installations versus upgrades.

CONSIDERATIONS

GUI

Software and
services

On most systems, except for servers, you probably want to install a graphical user
interface (a desktop). Ubuntu installs GNOME by default. See page 60 for informa-
tion about installing KDE.

As you install more software packages on a system, the number of updates and the
interactions between the packages increase. Server packages that listen for network
connections make the system more vulnerable by increasing the number of ways the
system can be attacked. Additional services can also slow the system down.

For a system to learn on, or for a development system, additional packages and services
may be useful. However, for a more secure production system, it is best to install and
maintain the minimum number of packages required and enable only needed services.
See page 507 for information on starting and stopping system services.

REQUIREMENTS

Hardware

This chapter and Chapter 3 cover installing Ubuntu on 32-bit Intel and compatible
processor architectures such as AMD as well as 64-bit processor architectures such
as AMD64 processors and Intel processors with Intel EM64T technology. Within
these processor architectures, Ubuntu Linux runs on much of the available hard-
ware. You can view Ubuntu’s list of compatible and supported hardware at
wiki.ubuntu.com/HardwareSupport. Many Internet sites discuss Linux hardware;
use Google (www.google.com/linux) to search for linux hardware, ubuntu hard-
ware, or linux and the specific hardware you want more information on (for exam-
ple, linux sata or linux a8n). In addition, many HOWTOs cover specific hardware.
There is also a Linux Hardware Compatibility HOWTO, although it becomes
dated rather quickly. Ubuntu Linux usually runs on systems that Windows runs on,
unless the system includes a very new or unusual component.

The hardware required to run Ubuntu depends on what kind of system you want to
set up. A very minimal system that runs a textual (command line) interface and has
very few software packages installed requires very different hardware from a system
that runs a GUI, has many installed packages, and supports visual effects (page 103).
Use the Alternate CD (page 28) if you are installing Ubuntu on a system with less
than 320 megabytes of RAM. If you want to run visual effects on the system, see
gentoo-wiki.com/HARDWARE_Video_Card_Support_Under_XGL for a list of sup-
ported graphics cards.

www.google.com/linux

26 CHAPTER 2

INSTALLATION OVERVIEW

RAM (memory)

CPU

Hard disk space

BIOS setup

CMOS

A network connection is invaluable for keeping Ubuntu up-to-date. A sound card is nice
to have for multimedia applications. If you are installing Ubuntu on old or minimal
hardware and want to run a GUI, consider installing Xubuntu (www.xubuntu.org), as
it provides a lightweight desktop and uses system resources more efficiently than
Ubuntu does.

An extremely minimal textual (command line) system requires 32 megabytes of
RAM. A standard desktop system requires 320 megabytes, although you may be
able to use less if you install Xubuntu. Installing Ubuntu from a live session requires
320 megabytes. Use the textual installer (page 67) if the system has less than 320
megabytes of RAM.

Linux makes good use of extra memory: The more memory a system has, the faster
it runs. Adding memory is one of the most cost-effective ways you can speed up a
Linux system.

Ubuntu Linux requires a minimum of a 200-megahertz Pentium-class processor or the
equivalent AMD or other processor for textual mode and at least a 400-megahertz
Pentium II processor or the equivalent for graphical mode.

The amount of hard disk space Ubuntu requires depends on which edition of Ubuntu
Linux you install, which packages you install, how many languages you install, and
how much space you need for user data (your files). The operating system typically
requires 2-8 gigabytes, although a minimal system can make due with much less space.
Installing Ubuntu from a live session requires 4 gigabytes of space on a hard disk.

Modern computers can be set to boot from a CD/DVD or hard disk. The BIOS
determines the order in which the system tries to boot from each device. You may
need to change this order: Make sure the BIOS is set up to try booting from the
CD/DVD before it tries to boot from the hard disk.

CMOS is the persistent memory that stores hardware configuration information. To
change the BIOS setup, you need to edit the information stored in CMOS. When the
system boots, it displays a brief message about how to enter System Setup or CMOS
Setup mode. Usually you need to press Del or F2 while the system is booting. Press the
key that is called for and move the cursor to the screen and line that deal with boot-
ing the system. Generally there is a list of three or four devices that the system tries
to boot from; if the first attempt fails, the system tries the second device, and so on.
Manipulate the list so that the CD/DVD is the first choice, save the list, and reboot.
Refer to the hardware/BIOS manual for more information.

PROCESSOR ARCHITECTURE

Ubuntu CDs and DVDs hold programs compiled to run on a specific processor
architecture (class of processors, or CPUs). The following list describes each of the
architectures Ubuntu is compiled for. See help.ubuntu.com/community/ProcessorArch
for a detailed list of processors in each architecture. Because Linux source code is
available to everyone, a knowledgeable user can compile Ubuntu Linux to run on
other processor architectures.

www.xubuntu.org

PLANNING THE INSTALLATION 27

PC (Intel x86)

64-bit PC (AMDG64)

SPARC

Mac (PowerPC)

Software on an Ubuntu PC (Intel x86) CD/DVD is compiled to run on Intel x86-
compatible processors, including most machines with Intel and AMD processors,
almost all machines that run MS Windows, and newer Apple Macintosh machines
that use Intel processors. If you are not sure which type of processor a machine has,
assume it has this type of processor.

Software on an Ubuntu 64-bit PC (AMD64) CD/DVD is compiled to run on
AMD64 processors, including the Athlon64, Opteron, and Intel 64-bit processors
that incorporate EM64T technology, such as the EMT64 Xeon. Because some fea-
tures of proprietary third-party applications are not available for 64-bit architec-
ture, you may want to run Ubuntu compiled for a 32-bit (Intel x86) processor on a
system with a 64-bit processor.

Software on an Ubuntu SPARC CD (there is no DVD for this architecture) is com-

piled to run on UltraSPARC machines, including those based on the multicore
UltraSPARC T1 (Niagara) processors.

Ubuntu does not officially support the PowerPC, but there is extensive community
support for this processor architecture. See wiki.ubuntu.com/PowerPCFAQ for more
information about running Ubuntu on a PowerPC. You can download PowerPC ver-
sions of Ubuntu from wiki.ubuntu.com/PowerPCDownloads.

INTERFACES: INSTALLER AND INSTALLED SYSTEM

Textual (CLI)

Graphical (GUI)

Pseudographical

Advantages

When you install Ubuntu, you have a choice of interfaces to use while you install it (to
work with the installer) and a choice of interfaces to use to work with the installed
system. This section describes the two basic interfaces: textual and graphical.

A textual interface, also called a command line interface (CLI) or character-based
interface, displays characters and some simple graphical symbols. It is line oriented;
you give it instructions using a keyboard only.

A graphical user interface (GUI) typically displays a desktop (such as GNOME) and
windows; you give it instructions using a mouse and keyboard. You can run a textual
interface within a GUI by opening a terminal emulator window (page 114). A GUI
uses more computer resources (CPU time and memory) than a textual interface does.

A pseudographical interface is a textual interface that takes advantage of graphical ele-
ments on a text-based display device such as a terminal. It may also use color. This
interface uses text elements, including simple graphical symbols, to draw rudimentary
boxes that emulate GUI windows and buttons. The 148 key frequently moves the cursor
from one element to the next and the RETURN key selects the element the cursor is on.

A GUI is user friendly, whereas the textual interface is compact, uses fewer system
resources, and can work on a text-only terminal or over a text-only connection.
Because it is more efficient, a textual interface is useful for older, slower systems and
systems with minimal amounts of RAM. Server systems frequently use a textual
interface because it allows the system to dedicate more resources to the job it is set
up to do and fewer resources to pleasing the system administrator. Not running a
GUI can also improve system security.

28 CHAPTER 2

INSTALLATION OVERVIEW

Installer interfaces

1] Contflgure time zone

Select your time zone!

Time zore: POT [GMT.7:001 Cusrent time: 10:3236 AM

step 3of8 C)cancel $a Back i Eorward

Figure 2-1 Graphical (left) and textual (pseudographical, right) installers

Ubuntu provides a user-friendly, graphical installer (ubiquity) and an efficient,
pseudographical installer that offers more options and gives you greater control
over the installation (Figure 2-1). Both interfaces accomplish the same task: They
enable you to tell the installer how you want it to configure Ubuntu.

UBUNTU RELEASES

LTS releases

Ubuntu distributes a new release about every six months. Each release has both a
number and a name. In sequence, recent releases are 6.06 (Dapper Drake), 6.10
(Edgy Eft), 7.04 (Feisty Fawn), and 7.10 (Gutsy Gibbon). Ubuntu supports (i.e., pro-
vides updates for, including security updates) each release for at least 18 months.

Ubuntu supports releases of its operating system marked LTS (long-term support—
Dapper is an LTS release) for three years for a desktop system and for five years for
a server system. LTS releases are designed for people who are more interested in
having a stable, unchanging operating system rather than the latest, fastest version.
Large and corporate installations frequently fall into this category. You can install
and upgrade an LTS release just as you would any other release.

UBUNTU EDITIONS

Desktop CD

Alternate CD

The Desktop CD is a live/install CD (page 24); you can use it to boot into a live ses-
sion. You can install Ubuntu from a live session (page 48). This CD is available for
PC and 64-bit PC architectures (page 26), uses the graphical installer, and installs a
graphical (desktop) Ubuntu system.

The Alternate Install CD is not a live CD; it is for special installations only. It pre-
sents more advanced installation options than the Desktop CD does. This CD is
available for PC and 64-bit PC architectures (page 26), uses the textual installer,
and installs an Ubuntu system that displays either a graphical or a textual interface.
You can use this CD to

PLANNING THE INSTALLATION 29

Server CD

DVD

¢ Upgrade from older releases of Ubuntu on systems without an Internet
connection.

® Rescue a broken system (page 67).

e Install Ubuntu on systems with less than 256 megabytes of RAM. These
systems may work best from a textual interface; they may not be able to
run a graphical interface fast enough to be usable.

e Set up RAID (page 34) and/or LVM (page 35) partitions.
e Create preconfigured OEM systems.

¢ Set up automated deployments (having the installer answer installation
questions automatically; also called preseeding).

The Server CD is not a live CD; it is for installation only. This CD is available for
PC, 64-bit PC, and SPARC architectures (page 26). It uses the textual installer and
installs an Ubuntu system that displays a textual interface (no desktop). During
installation, the Server CD gives you the option of installing DNS and/or LAMP
(Linux, Apache, MySQL, and PHP). A system installed using this CD has no open
ports (page 383) and includes only software essential to a server.

The DVD is a live/install DVD (page 24); you can use it to boot into a live session.
You can install Ubuntu from a live session (page 48). The DVD is available for PC
and 64-bit PC architectures (page 26), uses the graphical or textual installer, and
installs an Ubuntu system that displays either a graphical or a textual interface. The
DVD includes all software packages supported by Ubuntu, not just those installed
by default. It is an excellent resource for someone with a system that has no Internet
connection.

INSTALLING A FRESH COPY OR UPGRADING AN
EXISTING UBUNTU SYSTEM?

Clean install

Upgrade

An installation, sometimes referred to as a clean install, writes all fresh data to a
disk. The installation program overwrites all system programs and data as well as
the kernel. You can preserve some user data during an installation depending on
where it is located and how you format/partition the disk. Alternatively, you can
perform a clean install on an existing system without overwriting data by setting up
a dual-boot system (page 61).

An upgrade replaces the Linux kernel and utilities on an installed release of Ubuntu
Linux with a newer release. During an upgrade, the installation program preserves
both system configuration and user data files. An upgrade brings utilities that are
present in the old release up-to-date and installs new utilities. Before you upgrade a
system, back up all files on the system.

Because an upgrade preserves the desktop, an upgraded system may not display or
take advantage of new features that a clean install would display. See page 59 for
instructions on upgrading an Ubuntu system to a new release.

30 CHAPTER 2

INSTALLATION OVERVIEW

SETTING UP THE HARD DISK

Formatting and
free space

Partitions

Partition table

Filesystems

Mount point

Hard disks must be prepared in several ways so an operating system can write to
and read from them. Low-level formatting is the first step in preparing a disk for
use. Normally you do not need to low-level format a hard disk, as this task is done
at the factory. The next steps in preparing a hard disk for use are to write a partition
table to it and to create partitions on the disk. The area of the disk not occupied by
partitions is called free space. A new disk has no partition table and no partitions.
Under DOS/Windows, the term formatting means creating a filesystem on a parti-
tion; see “Filesystems” below.

A partition, or slice, is a logical section of a hard disk that has a device name, such
as /dev/sdal, so you can address it separately from other sections. From a live ses-
sion, and after you install Ubuntu, you can use the GNOME Partition Editor
(page 53) to view and resize partitions on an existing system. During installation,
you can use the ubiquity partitioner (pages S0 and 56) to create partitions. After
installation, you can use parted (page 673) to manipulate partitions. See /dev on
page 554 for more information on device names.

A partition table holds information about the partitions on a hard disk. Before the
first partition can be created on a disk, the program creating the partition must set
up an empty partition table on the disk. As partitions are added, removed, and
modified, information about these changes is recorded in the partition table. If you
remove a partition table, you can no longer access information on the disk except
by extraordinary means.

Before most programs can write to a partition, a data structure (page 1032), called
a filesystem, needs to be written to the partition. When the Ubuntu installer creates
a partition, it writes a filesystem to the partition. You can use the mkfs (make file-
system; page 525) utility, which is similar to the DOS/Windows format utility, to
manually create a filesystem on a partition. Table 13-1 on page 570 lists some
common types of filesystems. Ubuntu Linux typically creates ext3 filesystems for
data, whereas Windows uses FAT16, FAT32, and NTFS filesystems. Apple uses
HFS (Hierarchical Filesystem) and HFS+. OS X uses either HFS+ or UFS. Under
Linux, typical filesystem names are / (root), /boot, /var, /home, and /usr. Under
DOS/Windows, filesystems are labeled C:, D:, and so on (sometimes a whole disk
is a single partition). Different types of partitions can coexist on the same hard
disk, including both Windows and Linux partitions. Under Linux, the fsck (file-
system check; page 577) utility checks the integrity of filesystem data structures.

A partition holds no information about where it will reside in a system’s directory
structure. When you use the installer to create most partitions, you specify the name
of a directory that Ubuntu associates with the partition. For example, you might
create a partition and associate it with the /var directory. The location you specify is
the mount point for the partition. As part of the boot process, Ubuntu consults the
fstab (filesystem table; page 576) file which associates each partition with its mount
point. This association, called mounting, enables you to access the filesystem on a
partition using the name of the directory it is mounted on.

PLANNING THE INSTALLATION 31

Filesystem
independence

Guided partitioning

For example, the second partition on the first hard disk, with the device name
/dev/sda2, might hold the filesystem that normally is mounted on the /home direc-
tory. This association is normal, but not mandatory. When you work in recovery
mode, you may mount this filesystem on the /target directory so you can repair the
filesystem. A partition is frequently referred to by the name of its normal mount
point: Thus “the /home partition™ refers to the partition that holds the filesystem
normally mounted on the /home directory. See page 572 for more information on
mount points.

The state of one filesystem does not affect other filesystems: One filesystem on a
drive may be corrupt and unreadable while other filesystems function normally.
One filesystem may be full so you cannot write to it while others have plenty of
room for more data.

PRIMARY, EXTENDED, AND LOGICAL PARTITIONS

You can divide an IDE/ATA/SATA disk into a maximum of 63 partitions and a SCSI
disk into a maximum of 15 partitions. You can use each partition independently for
swap devices, filesystems, databases, other resources, and even other operating systems.

Unfortunately disk partitions follow the template established for DOS machines a
long time ago. At most, a disk can hold four primary partitions. You can divide one
(and only one) of these primary partitions into multiple logical partitions; this
divided primary partition is called an extended partition. If you want more than
four partitions on a drive—and you frequently do—you must set up an extended
partition.

A typical disk is divided into three primary partitions (frequently numbered 1, 2,
and 3) and one extended partition (frequently numbered 4). The three primary par-
titions are the sizes you want the final partitions to be. The extended partition occu-
pies the rest of the disk. Once you establish the extended partition, you can
subdivide it into additional logical partitions (numbered 5 or greater) that are each
the size you want. You cannot use the extended partition (number 4, above), only
the logical partitions it holds. Figure 17-5 on page 674 illustrates the disk described
in this paragraph.

PARTITIONING A DiISK

During installation, the installer calls a partitioner to set up disk partitions. This sec-
tion discusses how to plan partition sizes. Although this section uses the term parti-
tion, planning and sizing LVs (logical volumes; page 35) works the same way. For

more information refer to pages 53 and 56 and to the Linux Partition HOWTO at
www.tldp.org/HOWTO/Partition.

PLANNING PARTITIONS

It can be difficult to plan partition sizes appropriately if you are not familiar with
Linux. For this reason Ubuntu provides guided partitioning. Without asking any
questions, guided partitioning divides the portion of the disk allotted to Ubuntu

www.tldp.org/HOWTO/Partition

32 CHAPTER 2

INSTALLATION OVERVIEW

(swap)

/boot

into two partitions. One partition is the swap partition, which can be any size from
512 megabytes to 2 or more gigabytes. The other partition is designated as / (root)
and contains the remainder of the disk space. Having only two partitions makes
managing disk space quite easy. But if a program runs amok or if the system is sub-
jected to a DoS attack (page 1034), the entire disk can fill up. System accounting
and logging information, which may contain data that can tell you what went
wrong, may be lost.

PARTITION SUGGESTIONS

A Linux system must have a / (root) partition. It is advisable to set up a swap par-
tition as well. You can create additional partition/mount point pairs; this section
lists some of the more common ones. Any standard directories you do not create
partitions/mount points for automatically become subdirectories of the / (root)
directory and reside on the / (root) partition. For example, if you do not create a
partition to hold the /home filesystem, the installer creates home as a subdirectory
of / and the home directory resides on the / (root) partition.

Linux temporarily stores programs and data on a swap partition when it does not
have enough RAM to hold all the information it is processing. The size of the swap
partition should be between one and two times the size of the RAM in the system,
with a minimum size of 256 megabytes. For example, a system with 1 gigabyte of
RAM should have a 1- to 2-gigabyte swap partition. Although a swap partition is
not required, most systems perform better with one. A swap partition is not
mounted so it is not associated with a mount point. See swap on page 564 for more
information.

This partition holds the kernel and other data the system needs when it boots. The
/boot partition is typically about 100 megabytes, although the amount of space
required depends on how many kernel images you want to keep on hand. This
partition can be as small as 50 megabytes. Although you can omit the /boot parti-
tion, it is useful in many cases. Many administrators put an ext2 filesystem on this
partition because the data on it does not change frequently enough to justify the
added overhead of the ext3 journal. Some older BIOSs require the /boot partition
[or the / (root) partition if there is no /boot partition] to appear near the begin-
ning of the disk.

Where to put the /boot partition

On older systems, the /hoot partition must reside completely below cylinder 1023 of the hard disk.
When a system has more than one hard disk, the /boot partition must also reside on a drive on:

* Multiple IDE or EIDE drives: the primary controller
* Multiple SCSI drives: ID 0 or ID 1
 Multiple IDE and SCSI drives: the primary IDE controller or SCSI'ID 0

PLANNING THE INSTALLATION 33

/var

/home

/ (root)

/usr

/usr/local
and /opt

The name var is short for variable: The data in this partition changes frequently.
Because it holds the bulk of system logs, package information, and accounting data,
making /var a separate partition is a good idea. In this way, if a user runs a job that
consumes all of the user’s disk space, system logs will not be affected. The /var par-
tition can occupy from 500 megabytes up to several gigabytes for extremely active
systems with many verbose daemons and a lot of printer activity (files in the print
queue are stored on /var). Systems that are license servers for licensed software
often qualify as extremely active systems. By default, Apache content (Web pages it
serves) is stored on /var under Ubuntu.

It is a common strategy to put user home directories on their own disk or partition.
This partition is usually named /home. Having /home in a separate partition allows
you to perform a clean install without overwriting user files.

Set up partitions to aid in making backups

Plan partitions around which data you want to back up and how often you want to back it up. One
very large partition can be more difficult to back up than several smaller ones.

Some administrators choose to separate the / (root), /boot, and /usr partitions.
When you have Ubuntu decide how to partition the disk (guided partitioning), it
puts all directories in the root partition. By itself, the root partition usually con-
sumes less than 30 megabytes of disk space. However, /lib, which can consume
more than 300 megabytes, is part of the root partition. On occasion, you may
install a special program that has many kernel drivers that consume a lot of space in
the root partition. Allot 1 gigabyte to the root partition at a minimum.

Separating the /usr partition can be useful if you plan to export /usr to another sys-
tem and want the security that a separate partition can give. Many administrators put
an ext2 filesystem on this partition because the data on it does not change frequently
enough to justify the added overhead of the ext3 journal. The size of /usr depends on
the number of packages you install. On a default system, it is typically 2—4 gigabytes.

Both /usr/local and /opt are candidates for separation. If you plan to install many
packages in addition to Ubuntu Linux, you may want to keep them on a separate
partition. If you install the additional software in the same partition as the users’
home directories, for example, it may encroach on the users’ disk space. Many sites
keep all /usr/local or /opt software on one server and export it to other systems. If
you choose to create a /usr/local or /opt partition, its size should be appropriate to
the software you plan to install.

Table 2-1 (next page) gives guidelines for minimum sizes for partitions used by Linux.
Set the sizes of other partitions, such as /home, /opt, and /usr/local, according to
need and the size of the hard disk. If you are not sure how you will use additional disk
space, you can create extra partitions using whatever names you like (for example,
/b01, /b02, and so on) or wait until later to divide the space into partitions.

34 CHAPTER 2

INSTALLATION OVERVIEW

RAID

Example minimum partition sizes?

Partition Example size

/hoot 50-100 megabytes

/ (root) 1 gigabyte

(swap) One to two times the amount of RAM in the system with a minimum of 256
megabytes

/home As large as necessary; depends on the number of users and the type of work
they do

ftmp Minimum of 500 megabytes

[usr Minimum of 2-16 gigabytes, depending on which and how many software

packages you install

/var Minimum of 500 megabytes

a. The sizes in this table assume you create all partitions separately. For example, if you create a 1-gigabyte
/ (root) partition and do not create a /usr partition, in most cases you will not have enough room to store
all the system programs.

RAID (Redundant Array of Inexpensive/Independent Disks) employs two or more
hard disk drives or partitions in combination to improve fault tolerance and/or per-
formance. Applications and utilities see these multiple drives/partitions as a single
logical device. RAID, which can be implemented in hardware or software (Ubuntu
gives you this option), spreads data across multiple disks. Depending on which level
you choose, RAID can provide data redundancy to protect data in the case of hard-
ware failure. Although it can improve disk performance by increasing read/write
speed, software RAID uses quite a bit of CPU time, which may be a consideration.
True hardware RAID requires hardware designed to implement RAID and is not
covered in this book (but see “Fake RAID” on the next page).

Do not replace backups with RAID

Do not use RAID as a replacement for regular backups. If the system undergoes a catastrophic failure,
RAID is useless. Earthquake, fire, theft, and other disasters may leave the entire system inaccessible
(if the hard disks are destroyed or missing). RAID also does not take care of the simple case of replac-
ing a file when a user deletes it by accident. In these situations, a backup on a removable medium
(which has been removed) is the only way you will be able to restore a filesystem.

RAID can be an effective addition to a backup. Ubuntu offers RAID software that
you can install either when you install an Ubuntu system or as an afterthought. The
Linux kernel automatically detects RAID arrays (sets of partitions) at boot time if
the partition ID is set to 0xfd (raid autodetect).

Software RAID, as implemented in the kernel, is much cheaper than hardware
RAID. Not only does this approach avoid the need for specialized RAID disk con-
trollers, but it also works with the less expensive ATA disks as well as SCSI disks.

PLANNING THE INSTALLATION 35

Physical volumes (PVs)

Boot partition

Volume group (VG)

Logical volumes (LVs)
Figure 2-2 LVM: Logical Volume Manager

Fake RAID Ubuntu provides support for motherboard-based RAID (known as fake RAID)
through the dmraid driver set. Linux software RAID is almost always better than fake
RAID. For more information see help.ubuntu.com/community/FakeRaidHowto.

The partitioner on the Alternate CD gives you the choice of implementing RAID
level 0, 1, or 5:

e RAID level O (striping) Improves performance but offers no redundancy.
The storage capacity of the RAID device is equal to that of the member
partitions or disks.

® RAID level 1 (mirroring) Provides simple redundancy, improving data
reliability, and can improve the performance of read-intensive applications.
The storage capacity of the RAID device is equal to one of the member par-
titions or disks.

® RAID level 5 (disk striping with parity) Provides redundancy and
improves (most notably, read) performance. The storage capacity of the
RAID device is equal to that of the member partitions or disks, minus one
of the partitions or disks (assuming they are all the same size).

For more information refer to the Software-RAID HOWTO.

LVM: LoGICAL VOLUME MANAGER

The Logical Volume Manager (LVM2, which this book refers to as LVM) allows
you to change the size of logical volumes (LVs, the LVM equivalent of partitions) on
the fly. With LVM, if you make a mistake in setting up LVs or your needs change,
you can make LVs smaller or larger without affecting user data. You must choose to
use LVM at the time you install the system or add a hard disk; you cannot retroac-
tively apply it to a disk full of data. LVM supports IDE and SCSI drives as well as
multiple devices such as those found in RAID arrays.

LVM groups disk components (partitions, hard disks, or storage device arrays), called
physical volumes (PVs), into a storage pool, or virtual disk, called a volume group
(VG). See Figure 2-2. You allocate a portion of a VG to create a logical volume.

36 CHAPTER 2 INSTALLATION OVERVIEW

An LV is similar in function to a traditional disk partition in that you can create a
filesystem on an LV. It is much easier, however, to change and move LVs than parti-
tions: When you run out of space on a filesystem on an LV, you can grow (expand)
the LV and its filesystem into empty or new disk space, or you can move the file-
system to a larger LV. LVM’s disk space manipulation is transparent to users; service
is not interrupted.

LVM also eases the burden of storage migration. When you outgrow or need to
upgrade PVs, LVM can move data to new PVs. To read more about LVM, refer to
the resources listed on page 24.

THE INSTALLATION PROCESS

The following steps outline the process of installing Ubuntu Linux from a CD/DVD.
See Chapter 3 for installation specifics.

1. Insert the installation CD/DVD in and reset the computer. The computer
boots from the CD/DVD and displays the initial install screen (Figure 3-1,
page 46).

2. You can press function keys to display options, select an item from the ini-
tial install screen menu, and begin bringing up a live session or installing
Ubuntu when you are ready. Or you can do nothing. A live/install Desktop
CD/DVD starts to bring up the system after 30 seconds; an installation-
only CD waits for you to select an item from the menu. One of the menu
items checks the installation medium.

3. As part of the process of bringing up a live session or installing Ubuntu,
Ubuntu Linux creates RAM disks (page 1056) that it uses in place of a
hard disk used for a normal boot operation. The installer copies tools
required for the installation or to bring up a system from a live/install
Desktop CD/DVD to the RAM disks. The use of RAM disks allows the
installation process to run through the specification and design phases
without writing to the hard disk and enables you to opt out of the installa-
tion at any point before the system warns you it is about to write to the
hard disk (or you complete the installation). If you opt out before this
point, the system is left in its original state. The RAM disks also allow a
system booted from a live/install Desktop CD to leave the hard disk
untouched.

4. The installer prompts you with questions about how you want to configure
Ubuntu Linux.

5. When the installer is finished collecting information, it displays the Ready
to install screen (Figure 3-7, page 53). When you click Install, it writes the
operating system files to the hard disk.

DOWNLOADING AND BURNING A CD/DVD 37

6. The installer prompts you to remove the CD/DVD and press RETURN; it then
reboots the system.

7. The Ubuntu Linux system is ready for you to log in and use.

DOWNLOADING AND BURNING A CD/DVD

There are several ways to obtain an Ubuntu CD/DVD. Ubuntu makes available
releases of Linux as CD and DVD ISO image files (named after the ISO9660 standard
that defines the CD filesystem). This section describes how to download one of these
images and burn a CD/DVD. You can also point a browser at shipit.ubuntu.com to
display a Web page with links that enable you to request a free CD from Ubuntu or
purchase a CD/DVD from a Web site.

THE EASY WAY TO DOWNLOAD A CD ISO IMAGE FILE

This section explains the easiest way to download a CD ISO image file. This tech-
nique works in most situations; it is straightforward but limited. For example, it

does not allow you to use BitTorrent to download the file nor does it download a
DVD image.

To begin, point a browser at www.ubuntu.com and click Download Now or Get
Ubuntu. Select the release (page 28) and edition (page 28) you want to download.
Then select the type of system you want to install it on (see “Processor Architec-
ture” on page 26). Finally select a location from the drop-down list labeled Choose
a location near you and click Start Download. If the browser gives you a choice of
what to do with the file, save it to the hard disk. The browser saves the ISO image
file to the hard disk. Continue reading at “Burning the CD/DVD” on page 40.

OTHER WAYS TO DOwNLOAD A CD/DVD ISO IMAGE FILE

Browser

BitTorrent

This section explains how to download a release that is not listed on the Ubuntu
download page or a DVD image, and how to download a torrent that enables you
to use BitTorrent to download the ISO image file. See “Download Ubuntu” on
page 24 for other locations you can download Ubuntu from.

When you use a Web browser to download a file, the browser contacts a Web
(HTTP) or FIP server and downloads the file from that server. If too many people
download files from a server at the same time, the downloads become slower.

BitTorrent efficiently distributes large amounts of static data, such as ISO image files.
Unlike using a browser to download a file from a single server, BitTorrent distributes
the functions of a server over its clients. As each client downloads a file, it becomes a
server for the parts of the file it has downloaded. To use BitTorrent, you must down-
load a small file called a torrent (or have a Web browser do it for you). This file,
which holds information that allows clients to communicate with one another, has a
filename extension of .torrent. As more people use a torrent to download a file at the

www.ubuntu.com

38 CHAPTER 2 INSTALLATION OVERVIEW

El S e R e = |
ple Edt wiew Higtory Bockmarks Iools Help

<: - _") - {* _";} | hittpitwww. gt gatech.edwpubjubuntu-relesses/ A=k

1+]

Ubuntu Releases

The fallowing releases of Ubuntu are available:

» Ubunty 6.08.1 1TS (Dapper Drake)

although they are not directly supported by Cananical. releases of xubunty are avalable from the cdimage server,
For old releases, see old-releazes ubuntu,com.

Hamy Lt meaf Saze Dawirastion
- Barwat Dirwsbors
[Y 03-Sep- 2007 13:36 Ubuntu .06.1 LTS (Dapper Orake)
i 8-t 2007 1358
O s 05-Sup-2007 13.56 - Ubunbu 6.10 (Edyy EFL)
(i PP, 05-Sup-2007 13.55 - Ubunbu 7.04 (Fuisty Faw)
(i XYY 27-Sep- 2007 03:38 Ubuntu 7.10 Beta (Gutsy Gibbon)
] dagpars U-Gep-2007 106 - Ubuatu 6O 1 LTS (Oappar Orske)
[05-Sup-2007 13.56 - Ubunbu 6.10 (Edyy EFL)
I 02-0ct- 2007 12:36 Edubunty Asleases

i (-fep-2007 1045 - Ubuntu 704 (Faisty Fawn) =

Figure 2-3 An Ubuntu mirror I

same time, the downloads become faster. Downloading an ISO image file using
BitTorrent is covered later in this section.

Mirrors Many sites mirror (hold copies of) the Ubuntu ISO image files and BitTorrent tor-
rents. Some mirrors use HTTP while others use FIP; you can use a browser to
download files from either. FTP and HTTP appear slightly different. Point a
browser at www.ubuntu.com/getubuntu/downloadmirrors to locate a mirror site.
Scroll through the list of mirror sites, find a site near you, and click that site’s URL.
The browser displays a page similar to the one shown in Figure 2-3.

Click any link on the page that includes the name or release number of the version
of Ubuntu you want to install. The browser displays a page similar to the one
shown in Figure 2-4.

Downloading an IS0 You can click the links at the top of the page, although there is usually a better
image file selection of versions in the list of files at the bottom of the page. Click the number
or name of the release you want to download (e.g., gutsy or 7.10). At this point,
some sites display a page with two links: Parent Directory and release. If the
browser displays this page, click release. The browser displays a page with the name
and number of the release at the top, followed by a description of the different types
of CDs. At the bottom of the page is a list of files, with each line showing the name
of the file, the date it was created, its size, and a short description. Each filename is
a link. The following two lines describe the Intel x86 desktop ISO image file for
Gutsy (7.10) and the torrent file that enables you to use BitTorrent to download the
same ISO image file. The ISO image file is almost 700 megabytes; the torrent file is
27 kilobytes.

ubuntu-7.10-desktop-1386.17so 687M Desktop CD for PC (Intel x86) computers (standard download)
ubuntu-7.10-desktop-1386.17so0.torrent. .27k Desktop CD for PC (Intel x86) computers (BitTorrent download)

www.ubuntu.com/getubuntu/downloadmirrors

DOWNLOADING AND BURNING A CD/DVD 39

Downloading a DVD

Using BitTorrent

Click the filename/link that specifies the release, edition, and architecture you want.
For example, clicking gutsy-desktop-i386.iso downloads the CD ISO image for
Gutsy (release 7.10) desktop (edition) for the i386 architecture. Save the file to the
hard disk. Next, download the file named MD5SUMS.htm (at the top of the list) to
the same directory. An easy way to save a file is to right-click it, select Save
Link/Target As, and save the file to a directory with enough space for the file. See
page 40 for an explanation of how to use the MD5SUMS.htm file to verify the ISO
image file you download.

To download a DVD ISO image file, go to cdimage.ubuntu.com/releases and follow
the instructions under “Downloading an ISO image file.” You can identify DVD
ISO image files by the string dvd in their names. Make sure you have room for the
file on the hard disk: A DVD ISO image file occupies about 4 gigabytes.

You can use BitTorrent to obtain an ISO image file. Because BitTorrent is avail-
able for both Windows and Mac OS X (www.bittorrent.com), you can download
and burn the Ubuntu CD/DVD under either of these operating systems. To

Ele Edt View Higtory Hookmarks J_ools uelp

a

| httpjwww.gtlib gatech edupubjubuntu-releases gutsyl bl 3

«» QO
Ubuntu 7.10 (Gutsy Gibbon) Beta

I*]

Ubuntu derivatives
D images for tubunty and gduburty are also available.

Select an image
Ubuntu is distributed an three types of images described below.

Desktop CD

The desktop CD allows you to try Ubuntu without changing your cemputer at all, and at your option to install it permanently
later. This type of CO is what most pacple will want to use. vou will need at least 320MB of RAM ta install from this Co.

There are two images available, each for a different type of computer:

PC (Intel x86) desktop CD
For almast all PCs. This mcludes rmost mackines with InbelfAMB/ete type processors and alrmost all computers that run
Microsoft Windows, as well as newer Apple Macintosh systems based on Intel processors. Choose this it you are at all
unsure,

- .Sd.-“';ﬁ.("-uﬁl'."‘:-‘l_si' “h'mp"‘ﬁ_ — —_— _— e — -
Choose this to take full advantage of computers based on the AMDES or EMGAT archecture e.g.. AthlenGa, Opteran.
EMAAT ¥iran). If you have a non-84-bil pracessor made by AMD, or if you need full suppart for 32-bit code, use the Intel
=06 images instead.
A full list of available files. including itlarrart files. can be found below.

#you need help burning these images to disk. see this guide.

-,

27-Sep 2007 03-43 481

ubynty- 7 25-5ep-2007 07:26 638K Alternate install O for 64.bit PC [AMGSA] computers [standard
ubynty 7 andid_iso toresny 27-Sep 2007 03:38 27K Alternate install CD for 64.bit PC [AMDSA| computers (

ubynty 7 Sep 2007 0338 133k Alternate install CD far 64 bit PO (AMCEA| computers [1igd:
wbuny: 7, and6d, Ligt 23-5ep-2007 07:26 88K Alternate install CO for 64-bit PC {AMGS4| computers (file 1.
wnntu-T, andfd bumplaly 5-5ep-3007 07.36 5.IH Altwrrate cstsll OO for G4.but PCO(AMDE4] compulers [b
wruntu-T. 4386, 37 T0OM Mlterrete wrstsll OO for PC [Intel 185) computers [starsdard
wruntu-T. B Mternate ctbld 0 for PC (Intel aB8) commtors [Batlecomt,
stnmby-7, llslt

stnmby-7,

whnntu-7, 5 M Mltwrnate irstsll CD for PC | Intel 286} computers |iaad tespli
wtambu-7, G7BH Duskiop CO for G4-but PC | AMDE4) computlers (stardard downlowd)
whnntu-7, 27-54p-2007 0342 27K Dwskiop CO for Gd-but PO {AMDE4) computers [BatTorrant downlos

25.54p-2007 0738 14K Dwskbop £ for Bdcbat PO [AMDE4} computers |fale Lastarmg)

25.54p-2007 0748 30K Dwskiop CO for Gd-but PO {AMDE4) compulers [contents of Lave 12

wtambu-7, 25-54p-2007 0753 BETH Dwskiop €O for PC {Intel 86) computers |stardard downlosd)
wtambu-7, shtou-a386, anu borrant 27-Swpe2007 03.42 27K Deskbop O for PC |Intel 286 computers (BatTerrat downlosd)
wtambu-7, il 25-54p-2007 0733 14K Dwskiop £ for PC [Intel 185) cosputers (file Listar)

wtambu-7, 4386, manaf ust 25.54p-2007 0741 31K Duwskiop €O for PC {Intel 86) computers [comtents of Live fal
whnntu-7, Fery 25-5ap-2007 0538 516 Swrver irstell €0 for G4-but PC [AMDE4) compulers (st

wtambu-7, pedfd sy burrant 27-5ep-3007 0343 J0K Swrver wstall C0 for G4-bat PO (AMDE4) computers (BalTorranl
wtambu-7, i, 1y 27-54p-2007 0343 50K Swrver instell €0 for S4-bat PO [AMDE4] compulers |pamdy downl,
ubunbu-T. 464, Lash 25 2007 05.38 65K Server anatall €0 for 64-bul PC [AMDE4) comcutmra [iale l..l;-_

Figure 2-4 An Ubuntu mirror II

www.bittorrent.com

40 CHAPTER 2

INSTALLATION OVERVIEW

download a torrent, point a browser at releases.ubuntu.com and click the file-
name of the torrent. You can identify a torrent file by its filename extension of
.torrent. A BitTorrent client should start automatically and ask where to put the
downloaded file. You can also download the torrent manually; follow the
instructions under “Downloading an ISO image file” on page 38. You can then
start downloading the file from the command line (page 604) or by clicking it in
a File Browser such as Nautilus (page 96).

You can download and burn the CD/DVD on any operating system

You can download and burn the CD/ DVD on any computer that is connected to the Internet, has
a browser, has enough space on the hard disk to hold the ISO image file (about 700 megabytes
for a CD and 4 gigabytes for a DVD), and can burn a CD/DVD. You can frequently use ftp
(page 732) or, on a Linux system, Nautilus menubar: File=>Places=Connect to Server
(page 263) in place of a browser to download the file.

VERIFYING AN ISO IMAGE FILE

This section assumes you have an ISO image file and a MD5SUMS.htm file saved
on the hard disk and explains how to verify that the ISO IMAGE file is correct. The
MD5SUMS.htm file contains the MDS (page 1047) sums for each of the available
ISO image files. When you process a file using the md5sum utility, md5sum generates
a number based on the file. If that number matches the corresponding number in
the MD5SUMS.htm file, the downloaded file is correct. You can run the following
commands from a terminal emulator:
$ grep desktop-i386 MD5SUMS.htm;md5sum gutsy-desktop-i386.iso

198fc@31e7e482514eb57a2a7890dcac xgutsy-desktop-i386.1iso
198fc@31e7e482514eb57a2a7890@dcac gutsy-desktop-i386.1iso

Computing an MDS§ sum for a large file takes a while. The two long strings that the
preceding command displays must be identical: If they are not, you must download
the file again.

Make sure the software is set up to burn an 1ISO image

Burning an IS0 image is not the same as copying files to a CD/DVD. Make sure the CD/DVD burn-
ing software is set up to burn an ISO image. If you simply copy the 1SO file to a CD/DVD, it will
not work when you try to install Ubuntu Linux.

BURNING THE CD/DVD

An ISO image file is an exact image of what needs to be on the CD/DVD. Putting
that image on a CD/DVD involves a different process than copying files to a
CD/DVD. The CD/DVD burning software you use has a special selection for burn-
ing an ISO image. It has a label similar to Record CD from CD Image or Burn CD
Image. Refer to the instructions for the software you are using for information on
how to burn an ISO image file to a CD/DVD.

GATHERING INFORMATION ABOUT THE SYSTEM 41

You must use 700-megabyte CD-ROM blanks

When you burn an Ubuntu Linux GD from an ISO image, you must use a 700-megabyte blank. A
650-megabyte blank will not work because there is too much data to fit on it.

GATHERING INFORMATION ABOUT THE SYSTEM

It is not difficult to install and bring up an Ubuntu Linux system. Nevertheless, the
more you know about the process before you start, the easier it will be. The installa-
tion software collects information about the system and can help you make deci-
sions during the installation process. However, the system will work better when
you know how you want your disk partitioned rather than letting the installation
program create partitions without your input. There are many details, and the more
details you take control of, the more pleased you are likely to be with the finished
product. Finding the information that this section asks for will help ensure you end
up with a system you understand and know how to change when necessary. To an
increasing extent, the installation software probes the hardware and figures out
what you have. Newer equipment is more likely to report on itself than older equip-
ment is.

Test the IS0 file and test the CD/DVD

It is a good idea to test the I1SO image file and the burned CD/DVD before you use it to install
Ubuntu Linux. When you boot the system from the CD/DVD, Ubuntu gives you the option of
checking the CD/DVD for defects (page 47). A bad file on a CD may not show up until you finish
installing Ubuntu Linux and have it running. At that point, it may be difficult and time-consuming
to figure out where the problem lies. Testing the file and CD/DVD takes a few minutes, but can save
you hours of trouble if something is not right. If you want to perform one test only, test the
CD/DVD.

It is critical to have certain pieces of information before you start. One thing Linux
can never figure out is all the relevant names and IP addresses (unless you are using
DHCEP, in which case the addresses are set up for you).

Following is a list of items you may need information about. Get as much informa-
tion on each item as you can: manufacturer, model number, size (megabytes,
gigabytes, and so forth), number of buttons, chipset (for cards), and so on. Some
items, such as the network interface card, may be built into the motherboard.

e Hard disks.
¢ Memory. You don’t need it for installation, but it is good to know.
¢ SCSI interface card.

e Network interface card (NIC).

42 CHAPTER 2

INSTALLATION OVERVIEW

* Video interface card (including the amount of video RAM/memory).
® Sound card and compatibility with standards, such as SoundBlaster.
e Mouse (PS/2, USB, AT, and number of buttons).

® Monitor (size and maximum resolution).

e P addresses and names, unless you are using DHCP (page 538), in which
case the IP addresses are automatically assigned to the system. Most of this
information comes from the system administrator or ISP.

+ System hostname (anything you like).
+ System address.
o Network mask (netmask).

+ Gateway address (the connecting point to the network or Internet) or
a phone number when you use a dial-up connection.

+ Addresses for nameservers, also called DNS addresses.

+ Domain name (not required).

CHAPTER SUMMARY

A live/install Desktop CD runs a live Ubuntu session without installing Ubuntu on
the system. You can install Ubuntu from a live session. Booting a live/install Desk-
top CD is a good way to test hardware and fix a system that will not boot from the

hard disk.

Before you download or otherwise obtain an Ubuntu CD or DVD, make sure you
are using medium that is appropriate to the hardware you are installing it on and to
what the system will be used for. Ubuntu has three editions: Desktop (the most com-
mon), Alternate (for special cases), and Server. The Ubuntu live DVD combines fea-
tures of all three of these editions.

When you install Ubuntu Linux, you copy operating system files from a CD or
DVD to hard disk(s) on a system and set up configuration files so Linux runs prop-
erly on the hardware. Operating system files are stored as CD or DVD ISO image
files. You can use a Web browser or BitTorrent to download an ISO image file. It is
a good idea to test the ISO image file when it is downloaded and the burned
CD/DVD before you use it to install Ubuntu Linux.

When you install Ubuntu, you can let the installer decide how to partition the
hard disk (guided partitioning) or you can manually specify how you want to par-
tition it.

ADVANCED EXERCISES 43

EXERCISES

1. Briefly, what does the process of installing an operating system such as
Ubuntu Linux involve?

2. What is an installer?
3. Would you set up a GUI on a server system? Why or why not?

4. A system boots from the hard disk. To install Linux, you need it to boot
from a CD/DVD. How can you make the system boot from a CD/DVD?

5. What is free space on a hard disk? What is a filesystem?
6. What is an ISO image? How do you burn an ISO image to a CD/DVD?

ADVANCED EXERCISES

7. List two reasons why RAID cannot replace backups.
8. What are RAM disks? How are they used during installation?

9. What is MDS5? How does it work to ensure that an ISO image file you
download is correct?

This page intentionally left blank

IN THIS CHAPTER

Basic Installation from the
Live/Install Desktop CD/DVD ...

The Ubuntu Graphical Installer ...

Graphical Partitioners...........

Setting Up a Dual-Boot System . ..

The live/Install Desktop CD:
The Initial Install Screen

The Alternate CD Initial Install
ScreenMenu

The Server CD Initial Install
ScreenMenu ...,

The Ubuntu Textual Installer.
Manual Partitioning
Setting Up a RAID Array

The xorg.confFile

46
48

STEP-BY-STEP
INSTALLATION

Chapter 2 covered planning the installation of Ubuntu Linux:
determining the requirements; performing an upgrade versus a
clean installation; planning the layout of the hard disk;
obtaining the files you need for the installation, including how
to download and burn CD/DVD ISO images; and collecting
information about the system. This chapter focuses on install-
ing Ubuntu. Frequently the installation is quite simple, espe-
cially if you have done a good job of planning. Sometimes you
may run into a problem or have a special circumstance; this
chapter gives you tools to use in these cases. Read as much of
this chapter as you need to; once you have installed Ubuntu,
continue with Chapter 4, which covers getting started using
the Ubuntu desktop. If you install a textual (command line)
system, continue with Chapter 5.

45

46 CHAPTER3 STEP-BY-STEP INSTALLATION

BASIC INSTALLATION FROM THE LIVE/INSTALL
DeskTop CD/DVD

To begin installing Ubuntu from a live/install Desktop CD/DVD, insert the disk in
the computer and boot the system. The system displays the initial install screen
(Figure 3-1). Refer to “BIOS setup” on page 26 if the system does not boot from the
CD/DVD. See “The Function Keys” on page 62 for information about changing the
language, keyboard, and accessibility features the live session uses.

The menu on the initial install screen differs depending on which edition of Ubuntu
(page 28) you are installing; along the bottom of the screen, the labels for the func-
tion keys remain the same. To the left of the menu, the live (desktop) CD/DVD dis-
plays a counter that counts down from 30 to 1; when the counter reaches 0, Ubuntu
boots the system. When you press a key (other than RETURN) before the counter
reaches 0, the counter stops and the system waits for you to make a selection from
the menu. The installation-only (Alternate and Server) CDs do not have a counter,
but rather wait for you to make a selection. This section describes how to boot into
a live session and how to install Ubuntu from that session.

BOOTING THE SYSTEM

Before Ubuntu can display a desktop from a live/install Desktop CD/DVD or install
itself on a hard disk, the Ubuntu operating system must be read into memory

£ vbunlty

Start or install Ubuntu

Start Ubuntu in safe graphics mode
223 Install with driver update CD

DEM install (for manufacturers)

Check CD for defects

Memory test

Boot from first hard disk

F1 Help FZ Language F3 Keumap F4 ¥GA FS Accessibility F6 O0ther Options

Figure 3-1 The initial install screen for the live/install Desktop CD

BASIC INSTALLATION FROM THE LIVE/INSTALL DESkTOP CD/DVD 47

(booted). This process can take a few minutes on older, slower systems or systems
with minimal RAM (memory). Each of the menu selections on the initial install
screen, except the memory test, boots the system.

CHECKING THE CD/DVD FOR DEFECTS

Whether you burned your own CD/DVD, purchased it, or are using the one
included with this book, it is a good idea to verify that the contents of the CD/DVD
is correct. On the initial install screen, use the ARROW keys to highlight Check the CD
for Defects (this selection checks DVDs too) and press RETURN. Checking the
CD/DVD takes a few minutes—Ubuntu keeps you apprised of its progress. When
Ubuntu finishes checking the CD/DVD, it displays the result of its testing. Press
RETURN to redisplay the initial install screen.

Test the CD/DVD

Testing the CD/DVD takes a few minutes but can save you much aggravation if the installation fails
or you run into problems after installing Ubuntu owing to bad media.

LIVE SESSION

In most cases, you can boot Ubuntu to run a live session that displays a desktop with-
out doing anything after you boot from the live/install Desktop CD/DVD: Ubuntu
displays the initial install screen, counts down from 30, boots the system, displays the
Ubuntu logo while an orange cursor moves back and forth on the progress bar, and
finally displays the GNOME desktop (Figure 3-2). To speed up this process, you can

j Applications Places System @ @ & % Fri Nov 16, 1:21 AM [9)

Examples

Live sassion usar

T Y

Install

Install object

Figure 3-2 The GNOME desktop displayed by a live session

48 CHAPTER 3 STEP-BY-STEP INSTALLATION

optional

ubiquity

Welcome screen

press RETURN when Ubuntu displays the initial install screen. The first time you use a
CD/DVD, it is a good idea to check it for defects (see the previous page).

If you encounter problems with the display while you are bringing up the desktop
from a live/install Desktop CD/DVD or during installation, reboot the system and
select Start Ubuntu in safe graphics mode (page 62) from the initial install screen. If
that does not work, install Ubuntu using the textual installer on the Alternate CD
(page 65) or the DVD.

The live/install Desktop CD/DVD gives you a chance to preview Ubuntu without
installing it. Boot the live/install Desktop CD/DVD to begin a live session and work
with Ubuntu as explained in Chapter 4. When you are finished, remove the
CD/DVD and reboot the system. The system boots as it did before the live session.

Because a live session does not write to the hard disk (other than using a swap parti-
tion if one is available), none of the work you save will be available once you reboot.
You can use Webmail or another method to transfer files you want to preserve to
another system.

SEEING WHAT IS GOING ON

If you are curious and want to see what Ubuntu is doing as it boots, remove quiet
and splash from the boot command line (Figure 3-16, page 64): With the initial
install screen displayed, press f6 to display the boot command line. Press BACKSPACE or
DEL to back up and erase quiet and splash from the boot command line. If you have
not added anything to this line, you can remove the two hyphens at the end of the
line. If you have added to this line, use the BACK ARROW key to back up over—but not
remove—whatever you added, the hyphens, and the SPACE on each side of them.
Then remove quiet and splash. As Ubuntu boots, it displays information about
what it is doing. Text scrolls on the screen, although sometimes too rapidly to read.

THE UBUNTU GRAPHICAL INSTALLER

The ubiquity utility is a graphical installer, written mostly in Python, which installs
Ubuntu from a live session. You can use the Alternate or Server CD or the DVD to
install Ubuntu using the textual installer (page 67).

Before you start, see what is on the hard disk

Unless you are certain you are working with a new disk, or you are sure the data on the disk is of no
value, it is a good idea to see what is on the disk before you start installing Ubuntu. You can use the
GNOME Partition Editor to examine the contents of a hard disk. See page 53 for more information.

To install Ubuntu from the live/install Desktop CD/DVD, start a live session and
double-click (use the left mouse button) the object on the desktop labeled Install
(Figure 3-2, page 47).

After a few moments Ubuntu displays the Welcome screen of the Install window
(Figure 3-3). This screen displays a welcome message and a query about which lan-
guage you would like ubiquity to use. The language you choose will be the default

BASIC INSTALLATION FROM THE LIVE/INSTALL DESkTOP CD/DVD 49

Insta S

- Welcome
Benapyckan Ready to install? Once you answer a few questions, the
. contents of the live CD can be installed on this computer so
AT you can run the system at full speed and without the CD.
w1
Answering the guestions should only take a few minutes
Bosanski
Catala Please choose the language used for the installation process
) This language will be the default language for the final system.
Cestina

Dansk

— List box
Deutsch .

Er Scrollbar
Sl Forward button
No localization

Esperanto

{1

Espaiol
Eesti
Euskaraz
Suomi
Frangais

Galego If you have Internet access. read the release
notes for information on problems that may affect
apred v

BIREW)
et

= Belease Notes

[«

Figure 3-3 The Install window, Welcome screen

language for the installed system; you can change this default once the system is
installed (page 132).

USING THE MOUSE TO WORK WITH THE INSTALL WINDOW

You can use the mouse or keyboard to make selections from the Install window
screens. To select a language from the Welcome screen using the mouse, left-click
the language you want to use in the list box at the left. If the language you want
does not appear on the displayed portion of the list, click or drag the scrollbar
(Figure 3-3) to display more languages; then click the language of your choice.
Ubuntu highlights the language you click. Once you select a language, you are fin-
ished working with the Welcome screen; click the Forward button to display the
next screen.

USING THE KEYBOARD TO WORK WITH THE INSTALL WINDOW

To use the keyboard to make selections, first use the TAB key to move the highlight to
the object you want to work with. On the Welcome screen, the objects are the
selected item in the list box and the buttons labeled Release Notes, Cancel, and For-
ward. With a language in the list box highlighted, use the UP ARROW and DOWN ARROW
keys to move the highlight to the language you want to use. The list scrolls auto-
matically when you move the highlight to the next, undisplayed entry in the list. See
“r3 Keymap” on page 63 to change the layout of the keyboard ubiquity uses during
installation.

Once you select a language, you are finished working with the Welcome screen; use
the 7a8 key to highlight the Forward button. The border of a button becomes thicker
and darker when it is highlighted. With the Forward button highlighted, press RETURN
to display the next screen.

50 CHAPTER3 STEP-BY-STEP INSTALLATION

Where are you?

Keyboard layout

Prepare disk space

iy install; EI@

Prepare disk space

How do you want to partition the disk?
@ ‘Guided - use entire disk!
@ SCsI3 (0,0,0) (sda) - 214.7 GB VMware, VMware Virtual S

() Manual

Figure 3-4 The ubiquity partitioner showing one empty hard disk

This book describes using the mouse to make selections from a graphical interface;
you can use the keyboard if you prefer.

Next, ubiquity displays the Where are you? screen. This screen allows you to specify
the time zone the computer is in. You can use the map or the drop-down list labeled
Selected city to specify the time zone. Initially, when it is over the map, the mouse
pointer appears a magnifying glass with a plus sign in it. Left-click the map near a
city that is in the same time zone as the computer; the map zooms in on that area.
Left-click again to choose a city; the name of the city appears in the box labeled
Selected city.

To use the drop-down list, click anywhere in the box labeled Selected city; ubiquity
expands the box into a list of cities. Use the mouse or ARROW keys to select a city and
then either click the city or press RETURN. Click Forward.

The Keyboard layout screen allows you to specify the type of keyboard to be used
by the installed system. (See “F3 Keymap” on page 63 to change the layout of the
keyboard ubiquity uses during installation.) Select the country you are in or the lan-
guage you will be using with the installed system from the list box on the left. Then
select the type of keyboard you will be using from the list box on the right. Click the
empty text box near the bottom of the window and enter some characters to test
your selection. Click Forward. The installer displays the Setting up the partitioner
window while it gets ready for the next step.

The Prepare disk space screen controls how ubiquity partitions the hard disk. See
page 31 for a discussion of some of the issues involved in partitioning a hard disk.

With a single, clean hard disk—a hard disk with nothing installed on it, as it comes
from the factory (i.e., no partition table)—the ubiquity partitioner displays a Prepare
disk space screen similar to the one shown in Figure 3-4. In this case, the simplest
way to partition the disk is to have ubiquity do it for you. By default, the radio button
labeled Guided — use entire disk and the radio button next to the name of the only
hard disk in the system are selected. If the system has two or more clean hard disks,
the ubiquity partitioner displays a line for each hard disk; click the radio button next
to the one you want to install Ubuntu on. Click Forward and ubiquity creates two
partitions on the hard disk: a small swap partition (page 32) and a root partition (/,
page 33) that occupies the rest of the disk. The installer displays the Starting Up the
Partitioner window while it gets ready for the next step.

If the Prepare disk space screen includes Guided - resize... and Guided - use the larg-
est continuous free space selections, there is probably at least one partition on the

BASIC INSTALLATION FROM THE LIVE/INSTALL DESkTOP CD/DVD 51

Migrate documents
and settings

Who are you?

= WTItEIPrEvIDUE CHENgE S LoTdiBRIan continte7) x|

Before you can select a new partition size, any previous
changes have to be written to disk.

You cannot undo this operation.

Please note that the resize operation may take a long time.

Figure 3-5 Write to disk warning window

hard disk (there could just be an empty partition table). If you are sure you do not
want to keep any of the information on the hard disk, you can select Guided - use
entire disk. To find out more about what is on the disk, see the section on the Parti-
tion Editor on page 53. For more information on guided partitioning, see page 56.
For information on manual partitioning, see page 57.

The ubiquity partitioner displays a warning window (Figure 3-5) if it is going to
write to the hard disk before it displays the Ready to install screen (Figure 3-7,
page 53). If it does not display this window, ubiquity will not make changes to the
hard disk until you click Install on the Ready to install screen.

If you are installing Ubuntu on a system that already has one or more operating
systems installed on it, and you are not overwriting those operating systems, the
Migrate documents and settings screen displays a list of accounts and settings
from the existing operating systems. For example, if you are creating a dual-boot
system on a system that already has Windows installed on it, this screen shows
the accounts from the Windows system and a list of programs and settings. It
might show your name from the Windows system and, under that, Internet
Explorer and My Documents. Put ticks in the check boxes adjacent to the items
you want to migrate to the Ubuntu system. On the lower portion of the screen,
enter the information necessary to create an Ubuntu user to receive the migrated
information.

The Who are you? screen (Figure 3-6 on the next page) sets up the first Ubuntu user.
This user can use sudo (page 88) to administer the system, including setting up addi-
tional users (page 658). Enter the full name of the user in the text box labeled What
is your name?. When you press RETURN, ubiquity enters the first name from the name
you just entered in the box labeled What name do you want to use to log in?. Press
RETURN to accept this name or backspace (page 137) over it and enter a different
name. Enter the same password in the next two (adjacent) boxes. Although ubiquity
accepts any password, it is a good idea to choose a more secure password if the sys-
tem is connected to the Internet. See “Changing Your Password” on page 135 for a
discussion of password security.

The final text box specifies the name of the computer. For use on a local network
and to connect to the Internet with a Web browser or other client, you can use a
simple name such as tiny. If you are setting up a system that is to function as a
server, see “FQDN” on page 847 for information on names that are valid on the
Internet. Click Forward.

52 CHAPTER 3 STEP-BY-STEP INSTALLATION

Tneta (=)

Who are you?

What is your name?

| samuel the Great

What name do you want to use to log in?
[sam |
If more than one person will use this computer, you can set up multiple accounts after installation.

Choose a password to keep your account safe

[rrwers | [ruenee |

What is the name of this computer?

This name will be used if you make the computer visible to thers on a network.

Step 7 of 8 l 3 cancel] [Ga Back] [q/farwam]

Figure 3-6 'The Install window, Who are you? screen

Ready to install The final screen ubiquity displays is the Ready to install screen (Figure 3-7). Unless

ubiquity asked your permission to write to the hard disk during the partitioning
phase of the installation, it has not written to the disk yet. If you click Cancel at this
point, the hard disk will remain untouched. This screen summarizes your answers
to the questions ubiquity asked in the previous screens. Click Advanced to display
the Advanced Options window, which allows you to choose whether to install a
boot loader (normally you want to) and whether you want the system to participate
in an automatic, informal package usage survey. Click OK to close the Advanced
Options window. If everything looks right in the summary in the Ready to install
screen, click Install. The installer begins installing Ubuntu on the hard disk.

This is when ubiquity writes to the hard disk

You can abort the installation by clicking the Cancel button at any point up to and including the
Ready to install screen (Figure 3-7) without making any changes to the system. Once you click Next
in this screen, ubiquity writes to the hard disk. However, if ubiquity displayed the warning window
shown in Figure 3-5 on page 51 and you clicked Gontinue, it wrote to the hard disk at that time.

The ubiquity installer displays a series of windows to keep you informed of its progress.
When the new system is installed, Ubuntu displays the Installation Complete window,
which gives you the choice of continuing the live session or rebooting the system so you
can use the newly installed copy of Ubuntu. Click Restart now to reboot the system.

Ubuntu displays its logo and a progress bar. When it has finished shutting down the
system, it asks you to remove the disk (so you do not reboot from the live/install
Desktop CD/DVD) and press RETURN. When you do so, it reboots the system and dis-
plays the Ubuntu GNOME login screen (Figure 4-1, page 90).

GRAPHICAL PARTITIONERS 53

it S5

Ready to install
Your new operating system will now be installed with the following settings

Language: English
Keyboard layout: U.S. English
Name: Sam the Great

Login name: sam

Location: America/Los_Angeles
Migration Assistant:

If you continue, the changes listed below will be written to the disks
Otherwise. you will be able to make further changes manually

WARNING: This will destroy all data on any partitions you have removed as
well as on the partitions that are going to be formatted

The partition tables of the following devices are changed:
SCSI1 (0,0,0) (sda)

The following partitions are going to be formatted
partition #1 of SCSI1 (0,0,0) isda) as ext3
partition #5 of SCSI1 (0,0,0) (sda) as swap

I {aBack

I = Install

Step 8 of 8 I 3¢ cancel

Figure 3-7 The Install window, Ready to install screen

GRAPHICAL PARTITIONERS

A partitioner displays and can add, delete, and modify partitions on a hard disk.
This section describes two graphical partitioners you can use to configure a hard
disk so you can install Ubuntu Linux. One partitioner, gparted, is available on the
live/install Desktop CD desktop. The other partitioner is part of the ubiquity installer
and is not available by itself. See page 57 for information on using the textual parti-
tioner, which is available when you use the textual installer. After you install
Ubuntu Linux, you can use parted (page 673) to manipulate partitions. If you want
a basic set of partitions, you can allow ubiquity to partition the hard disk automati-
cally using guided partitioning.

See “Setting Up the Hard Disk” on page 30 for a discussion of free space, parti-
tions, partition tables, and filesystems. “Partition Suggestions” on page 32 discusses
some of the filesystems you may want to set up partitions for.

gparted: THE GNOME PARTITION EDITOR

Unless you know the hard disk you are installing Ubuntu Linux on has nothing on it
(it is a new disk) or you are sure the disk holds no information of value, it is a good
idea to examine the contents of the disk before you start the installation. The
GNOME Partition Editor (gparted), which is available from a live session, is a good

54 CHAPTER3 STEP-BY-STEP INSTALLATION

Applications Places System e@e

Y4 Preferences 3

¢o) Administration »| ¢ Install

e o -

? Keyring Manager
I Language support
(&= Login Window

@ Help and support
‘€ About GNOME

-f:; About Ubuntu

@] auit...

S5 Network
|| Network Tools

™3 Partition Editor

4] GNOME Partition Editor
L

Figure 3-8 Selecting the Partition Editor from the Main menu

tool for this job. Open the Partition Editor window by selecting Main menu: Admin-
istration= Partition Editor as shown in Figure 3-8.

The Partition Editor displays the layout of a hard disk and can resize partitions, such
as when you are setting up a dual-boot system by adding Ubuntu to a Windows sys-
tem (page 61). Although you can create partitions using the Partition Editor, you
cannot specify the mount point (page 30) for a partition—this step must wait until
you are installing Ubuntu and using the ubiquity partitioner. You can save time if you
use the Partition Manager to examine a hard disk and the ubiquity partitioner to set
up the partitions that you install Ubuntu on.

AN EMPTY HARD DiISK

The Partition Editor shows one large unallocated space for a new hard disk (empty,
with no partition table). If you have more than one hard disk, use the list box in the
upper-right corner of the screen to select which disk the Partition Editor displays
information about. Figure 3-9 shows an empty 200-gigabyte hard disk on the
device named /dev/sda. Figure 3-4 on page 50 shows the ubiquity partitioner ready
to partition an empty drive similar to the one shown in Figure 3-9.

& dev/edaGRETEed| ==
GParted Edit View Device Partition Help
&) [devsda (200,00 GiB) 4
MNew
unallocated
200.00 GiB
Partition Filesystemn Size Used Unused Flags
unallecated unallocated 200.00 GiB
0 operations pending

Figure 3-9 The Partition Editor displaying an empty disk drive

GRAPHICAL PARTITIONERS 55

Jdev/sda - GParted =0
GParted Edit View Device Partition Help
| —
& =] & [sdevysda (200,00 GiB) %
Delete Resize/Move Copy
Jdevisdal
200.00 GiB
Partition Filesystemn Size Used Unused Flags
jdevjsdal ntfs 200.00 GIB 70.69 MiB 195.83 GIB
9 HESIZEMovEydev/sdaTs =
Minimum Size: 86 MIB Maxirmum Size: 204797 MiB
Free Space Preceding (MIB): ‘O
New Size (MiB); (1000002
Free Space Following (MiB): | 104797 a
l ogance\ I l | Resize/Move I
0 operations pending

Figure 3-10 The Partition Editor displaying a disk drive holding a Windows system

DELETING A PARTITION

Before deleting a partition, make sure it does not contain any data you need. To use
the Partition Editor to delete a partition, highlight the partition you want to delete
and click Delete and then Apply on the toolbar.

RESIZING A PARTITION

Figure 3-10 shows the Partition Editor displaying information about a hard disk
with a single partition that occupies the entire disk. It shows a single 200-gigabyte
NTFES filesystem. The process of resizing a partition is the same regardless of the
type of partition: You can use the following technique to resize Windows, Linux, or
other types of partitions.

Always back up the data on a hard disk

If you are installing Ubuntu on a disk that holds data that is important to you, always back up the
data before you start the installation. Things can and do go wrong. The power may go out in the
middle of an installation, corrupting the data on the hard disk. There may be a bug in the partition-
ing software that destroys a filesystem. Although it is unlikely, you might make a mistake and for-
mat a partition holding data you want to keep.

To install Ubuntu on this system, you must resize (shrink) the partition to make room
for Ubuntu. Before you resize a Windows partition, you must boot Windows and
defragment the partition using the Windows defragmenter; see the tip on page 61.
Although you can resize a partition with the ubiquity partitioner while you are install-
ing Ubuntu, it is easier to see what you are doing when you use the Partition Editor

56 CHAPTER3 STEP-BY-STEP INSTALLATION

for this task. Also, the ubiquity partitioner will not resize a partition on a hard disk
with more than one partition. To resize the partition, right-click to highlight the line
that describes the partition and select Resize/Move on the toolbar. The Partition Edi-
tor opens a small Resize/Move window, as shown in Figure 3-10 on page 55.

At the top of the Resize/Move window is a graphical representation of the partition.
Initially, the partition occupies the whole disk. The spin box labeled New Size (MiB)
shows the number of megabytes occupied by the partition—in this case the whole
disk. The two spin boxes labeled Free Space show no free space.

Back up the partition before you begin resizing. You can specify how you want to
resize the partition by (right-clicking and) dragging one of the triangles at the ends
of the graphical representation of the partition or by entering the number of mega-
bytes you want to shrink the Windows partition to in the spin box labeled New
Size. The value in one of the spin boxes labeled Free Space increases. Click
Resize/Move to add the resize operation to the list of pending operations at the bot-
tom of the window. Click Apply on the toolbar to resize the partition.

Although you can use the Partition Editor to create partitions to install Ubuntu on,
it may be easier to create partitions using ubiquity while you are installing Ubuntu.
The ubiquity partitioner allows you to specify mount points for the partitions; the
Partition Editor does not.

ubiquity: SETTING UP PARTITIONS

While you are installing Ubuntu, ubiquity offers two ways to partition a disk: guided
and manual. Guided partitioning sets up two partitions, one for swap space
(page 32) and one for / (root, where the entire Ubuntu filesystem gets mounted;
page 33). The amount of space occupied by root depends on which guided option
you select. Manual partitioning enables you to set up partitions of any type and
size, and to specify the mount point for each partition.

ADVANCED GUIDED PARTITIONING

“Prepare disk space” on page 50 explained how to use guided partitioning to parti-
tion an empty disk. This section explains how guided partitioning works on a disk
that is already partitioned.

Installing Ubuntu on a partitioned disk gives you a few options:

® You can install Ubuntu on the entire hard disk; by doing so you delete any
information that was on the hard disk.

e If the disk has enough free space, you can install Ubuntu in the free space,
typically creating a dual-boot system.

e If one partition has enough unused space, you can resize (shrink) the parti-
tion, creating free space in the process. You can then install Ubuntu in the

GRAPHICAL PARTITIONERS 57

free space. It it easier to see what you are doing if you use the Partiton Editor
to resize a partition before you begin installing Ubuntu. Also, the ubiquity
partitioner will not resize a partition on a hard disk with more than one par-
tition. For more information refer to “Resizing a Partition” on page 55.

Figure 3-11 shows the Prepare disk space screen for a hard disk with one partition
and some free space. If the disk had no free space, the partitioner would not display
Guided - use the largest continuous free space. If the disk had two or more parti-
tions, the partitioner would not give you the option of resizing a partition—you
must use the Partition Editor to resize a partition on a hard disk with more than one
partition.

Using the whole disk for Ubuntu is easy. Before you start, make certain the disk
does not contain any information you need. Once you rewrite the partition table,
the data is gone for good. If you are not sure what is on the disk, use the Nautilus
File Browser to take a look. (See page 96; select Main menu: Places=> Computer and
double-click one or more of the Filesystem objects.) To use guided partitioning to
partition the whole disk, click the radio button labeled Guided - use entire disk and
click Forward.

To use the free space, select Guided - use the largest continuous free space and click
Forward. If you want to use the ubiquity partitioner to resize a partition, click the
radio button labeled Guided - resize ... and drag the slider until the numbers above
it show the size you would like the new partition to be. Click Forward.

MANUAL PARTITIONING

This section explains how to use the ubiquity partitioner to create a partition on an
empty hard disk. Figure 3-4 on page 50 shows the Prepare disk space screen for an
empty hard disk. To create partitions manually, click the radio button labeled Man-
ual and click Forward. The ubiquity partitioner displays a Prepare partitions screen
that shows a device without any partitions. Before you can create partitions, you

_ Install = ==

Prepare disk space

How do you want to partition the disk?

@ :Guided - resize SCSI1 (0,0,0), partition #1 (sda) and use freed space:

A 50% (98.9 GB)
Mew partition size: —

() Guided - use entire disk

() Guided - use the largest continuous free space

() Manual

Figure 3-11 The Prepare disk space screen showing a hard disk
with one partition and some free space

58 CHAPTER3 STEP-BY-STEP INSTALLATION

Install
sty

Prepare partitions

Device Type Mount point Format? Size Used

jdevjsda

free space] 214748 MB

Figure 3-12 An empty hard disk with a partition table

must set up a partition table (page 30): Highlight the device name (e.g., /dev/sda)
and click New partition table. The partitioner asks you to confirm you want to cre-
ate a new empty partition table. Click Continue to create a partition table that con-
tains only free space. Now ubiquity displays a screen that looks similar to the one in
Figure 3-12. The device (hard disk) at /dev/sda has a partition table without any
partitions—it contains only free space.

To create a partition, highlight the line with free space in the Device column and
click New partition. The ubiquity partitioner displays a Create Partition window
(Figure 3-13), which asks you to specify whether you want to create a primary or a
logical partition (page 31), what size you want to make the partition (in mega-
bytes), whether you want the partition to appear at the beginning or end of the free
space, what type you want to make the partition (Use as), and the name of the
mount point (page 30) for the partition. Because Linux does not mount a swap par-
tition, you cannot specify a mount point for a type swap partition. If you are unsure
of which type a partition should be, choose ext3 (page 571). Click OK.

After a few moments the Prepare partitions screen displays the new partition
(Figure 3-14). To create another partition, highlight free space and repeat the preced-
ing steps. Remember to create a swap partition (page 32). When you have finished
creating partitions, click Forward.

The Prepare partitions screen displays two or three buttons immediately below the
frame that lists the disks and partitions. The labels on these buttons change depend-
ing on what is highlighted. This screen always displays a button labeled Undo

liza]

o Tal
- LrEELE T LILIONT

Create a new partition

Type for the new partition: @ Primary () Logical

New partition size in megabytes (1000000 bytes): [100000| |:]

Location for the new partition:

Use as:

Mount point:

@ Beginning

() End

[e)(ti%

&
-

‘jhume

-]

Figure 3-13 The Create Partition window

UPGRADING TO A NEW RELEASE 59

= eran = e
Prepare partitions
Device Type Mount point Format? Size Used
jdevisda
jdevjsdal ext3 home] 100002 MB unknown
free space 114742 MB

Figure 3-14 The Prepare partitions screen displays a new partition

changes to partitions. When the device is highlighted, the Prepare partitions screen
displays a New partition table button. Clicking this button creates a new partition
table, destroying any existing partition table. Highlighting a partition gives you the
choice of editing or deleting the partition. Editing a partition you just created allows
you to change only its type and mount point. You must delete and recreate a parti-
tion to change any of its other attributes. As mentioned earlier, highlighting free
space allows you to create a new partition.

UPGRADING TO A NEW RELEASE

Upgrading a system is the process of installing a new release of Ubuntu over an
older one. All user and configuration files are preserved and all software is
upgraded to the most recent version consistent with the new release of Ubuntu.
Ubuntu cautions that you must not skip releases when you upgrade; doing so can
cause irreparable damage to the system, requiring a clean install and potentially los-
ing data. For example, you can upgrade from Feisty Fawn (7.04) to Gutsy Gibbon
(7.10), but not from Edgy Eft (6.10) to Gutsy Gibbon. Ubuntu also advises against
upgrading systems that have had packages installed from repositories (page 588)
that it does not control. These packages may corrupt the software package data-
base, causing the upgrade to fail.

Before you upgrade a system, it is a good idea to back up all user files on the system.
The following procedure assumes that you have a desktop system that is connected
to the Internet. Even with a fast Internet connection, this process takes a long time.
Follow these steps to upgrade a system:

1. Open the Update Manager window (Figure 4-10, page 101) by selecting
Main menu: System= Administration= Update Manager.

2. Regardless of whether the window says You can install #n updates or
not, click Check. This step ensures the software package database is
up-to-date.

3. If the window displays You can install ## updates, click Install Updates.
This step ensures all software packages on the system are up-to-date.

60 CHAPTER3 STEP-BY-STEP INSTALLATION

4. At this point, if a new release is available, the window displays the message
New distribution release 'X.XX' is available. Click Upgrade.

5. The utility displays the Release Notes window. Read the release notes and
then click Upgrade.

6. The utility downloads the upgrade tool and updates some files.
7. You are asked if you want to start the upgrade. Click Start Upgrade.
8. When the upgrade is complete, reboot the system.

See www.ubuntu.com/getubuntu/upgrading for instructions on upgrading other edi-
tions of Ubuntu.

INSTALLING KDE

You can install KDE in one of two ways. The first approach installs KDE only: Follow
the instructions in Chapter 2 and this chapter but instead of downloading and burn-
ing an Ubuntu CD/DVD, download a Kubuntu CD/DVD from www.kubuntu.org,
burn it, and use that disk to install Linux.

The second approach requires the system to be connected to the Internet and
installs KDE in addition to GNOME. After you install Ubuntu as explained in this
chapter, use Synaptic (page 121) or aptitude (page 592) to perform the following
steps. This process takes a while; you will be downloading and installing more than
200 software packages.

1. Ensure the software package database is up-to-date: From Synaptic, click
Reload. To use aptitude, give the command sudo aptitude update from a
command line, terminal emulator, or Run Application window (ALT-F2).

2. Ensure all software packages on the system are up-to-date: From Synaptic,
click Mark All Upgrades and then click Apply. To use aptitude, give the
command sudo aptitude safe-upgrade from a command line, terminal
emulator, or Run Application window (ALT-F2).

3. Install the KDE software: From Synaptic, search for and install the
kubuntu-desktop virtual package (page 592). To use aptitude, give the
command sudo aptitude install kubuntu-desktop from a command line,
terminal emulator, or Run Application window (ALT-R2).

After the software is downloaded, while it is being installed, debconf asks if you
want to use the gdm (page 82, GNOME) or kdm (KDE) display manager. Either one
works with either desktop. One way to choose which display manager to use is to
select the one associated with the desktop you will be using most often.

Once KDE is installed, reboot the system. From the Login screen, follow the
instructions on page 132 to display the Action menu and select the session you want
to run (GNOME or KDE).

www.ubuntu.com/getubuntu/upgrading
www.kubuntu.org

SETTING UP A DUAL-BOOT SYSTEM 61

SETTING UP A DUAL-BOOT SYSTEM

A dual-boot system is one that can boot one of two (or more) operating systems.
This section describes how to add Ubuntu to a system that can boot Windows, cre-
ating a system that can boot Windows or Linux. You can use the same technique for
adding Ubuntu to a system that runs a different version or distribution of Linux.
One issue in setting up a dual-boot system is finding disk space for the new Ubuntu
system. The next section discusses several ways to create the needed space.

CREATING FREE SPACE ON A WINDOWS SYSTEM

Add a new disk drive

Use existing free
space

Resize Windows
partitions

Remove a Windows
partition

Typically you install Ubuntu Linux in free space on a hard disk. To add Ubuntu Linux
to a Windows system, you must have enough free space on a hard disk that already
holds Windows. There are several ways to provide or create this free space. The fol-
lowing paragraphs discuss these options in order from easiest to most difficult:

Add another disk drive to the system and install Linux on the new disk, which contains
only free space. This technique is very easy and clean but requires a new disk drive.

If there is sufficient free space on the Windows disk, you can install Linux there.
This technique is the optimal choice, but there is rarely enough free space on an
installed hard disk.

Always defragment before resizing

You must boot Windows and defragment a Windows partition before you resize it. Sometimes you
may need to run the Windows defragmenter several times to consolidate most file fragments. Not
only will defragmenting give you more space for a Linux partition, but it may also keep the process
of setting up a dual-boot system from failing.

Windows partitions typically occupy the entire disk, making resizing a Windows
partition the most common technique to free up space. Windows systems typically
use NTFS, FAT32, and/or FAT16 filesystems. You can use the Ubuntu Partition Edi-
tor to examine and resize an existing Windows partition to open up free space in
which to install Linux (page 55).

If you can delete a big enough Windows partition, you can install Linux in its place.
To delete a Windows partition, you must have multiple partitions under Windows
and be willing to lose the data in the partition you delete. In many cases, you can
move the data from the partition you will delete to another Windows partition.

Once you are sure a partition contains no useful information, you can use the Parti-
tion Editor to delete it (page 55). After deleting the partition, you can install
Ubuntu Linux in the free space left by the partition you removed.

INSTALLING UBUNTU LINUX AS THE SECOND OPERATING SYSTEM

After creating enough free space on a Windows system (see the previous section),
you can install Ubuntu Linux. On the ubiquity Prepare disk space screen, select

62 CHAPTER3 STEP-BY-STEP INSTALLATION

Guided - use the largest continuous free space. Or, if you are installing Ubuntu on
its own hard disk, select Guided - use entire disk and click the radio button next to
the disk you want to install Ubuntu on. Click Forward. When you boot from the
hard disk, you will be able to choose which operating system you want to run.

ADVANCED INSTALLATION

This section discusses the live/install Desktop CD initial install screen, using the
Alternate and Server CDs as well as the live/install DVD to install Ubuntu, and the
Ubuntu textual installer.

THE LIVE/INSTALL DESKTOP CD: THE INITIAL INSTALL SCREEN

Start or install
Ubuntu

Start Ubuntu in safe
graphics mode

Install with driver
update CD

OEM install (for
manufacturers)

Check CD for
defects

Memory test

Boot from first hard
disk

This section covers some of the things you can do from the initial install screen
(Figure 3-1, page 46) other than simply booting to a live session.

MENU SELECTIONS

Boots to a live session (page 47).

If you encounter problems with the display while you are bringing up a live session
or during installation, choose this menu selection. It adds xforcevesa to the boot
parameters, causing Ubuntu to use the generic vesa driver in place of the driver for
the graphics chip in the system. The vesa driver is slow and does not support high
resolutions, but it works with almost any graphics chip.

Installs Ubuntu with an updated driver.

Allows a manufacturer or reseller to preinstall Ubuntu but leave some configuration
details, such as creating a user account, to the purchaser.

Verifies the contents of the CD/DVD you are booting from (page 47).

Runs memtest86+, a GPL-licensed, stand-alone memory test utility for x86-based
computers. Press C to configure the test; press ESCAPE to exit and reboot. See
www.memtest.org for more information.

Boots the system from the first hard disk. This selection frequently has the same
effect as booting the system without the CD/DVD (depending on how the BIOS
[page 26] is set up).

THE FUNCTION KEYS

Along the bottom of the initial install screen is a row of labeled function key names
(Figure 3-1, page 46). Pressing these function keys displays information that may be
helpful if you are having a problem booting Ubuntu or working in a live session.
Some of the keys allow you to change boot parameters.

www.memtest.org

ADVANCED INSTALLATION 63

F1 Help

F2 Language

F3 Keymap

F4VGA

F5 Accessibility

F6 Other Options

Helcome to Ubuntu!

This is alive CO-ROM for Ubuntu
7.10. It was built on 20070925.2.

HELP INDEX
KEY TOPIC

B> This page, the help index.

<F2> Prereguisites for running Ubuntu.

<F3» Boot methods for special ways of using this CO-ROM.
<F4> Additional boot methods; rescuing & broken system.
<F5» Special bhoot parameters, overview.

<F&> Special boot parameters for special machines.

<F7> Special bhoot parameters for selected disk controllers.
<F8> Special boot parameters for the bootstrap sustem.

<F9> How to g2et help.

<F10» Copyrights and warranties.

Press F2 through F1o for details, or Escape to exit help.

Figure 3-15 Initial install screen, F1 help window

The Fi key displays the help window shown in Figure 3-15. Pressing a function key
while this window is displayed displays yet another help window. Pressing a func-
tion key when this window is not displayed has the effect described in the following
paragraphs. Press ESCAPE to close the help window.

The r2 key displays a menu of languages. Use the ARROW keys to highlight the lan-
guage you want the live session to use and then press RETURN. This language is not
necessarily the language the installed system displays.

The r3 key displays a menu of countries and languages. Use the ARROW keys to high-
light the country/language of the keyboard you want the live session to use; press
RETURN. This keyboard is not necessarily the keyboard the installed system uses.

The ubiquity installer normally detects the characteristics of the monitor attached to
the system. The F4 key displays a list of monitor resolutions and color depths
(page 1029). For example, 640 x 480 x 16 specifies a resolution of 640 x 480 dots
per inch (dpi) and a color depth of 16. Use the ARROW keys to highlight the resolution
and color depth you want the live session to use and then press RETURN. This selection
is not necessarily the resolution and color depth the installed system uses.

The F5 key displays a list of features, such as a high-contrast display and a Braille
terminal, that can make Ubuntu more accessible for some people. Use the ARROW keys
to highlight the feature you want the live session to use and then press RETURN.

The 6 key displays the boot command line (Figure 3-16 on the next page). Type the
parameters you want to add to the boot command line (discussed in the next section)
after the double hyphen and press RETURN to boot the system. If you remove quiet and
splash from this line, Ubuntu displays what it is doing while it boots (page 48).

BooT COMMAND LINE PARAMETERS (BOOT OPTIONS)

Following are some of the parameters you can add to the boot command line (see
“f6 Other Options” above). You can specify multiple parameters separated by SPACEs.

64 CHAPTER3 STEP-BY-STEP INSTALLATION

noacpi

noapic

noapm

irgpoll
nolapic

£ ubuaty

Start or install Ubuntu

Start Ubuntu in safe graphics mode

Install with driver update CD Boot command line
0EM install (for manufacturers)

Check CD for defects

Hemary test

Boot from first hard disk

Boot Options t=casper initrd=s/caspersinitrd.gz quiet splash ——I

F1 Help F2 Language F3 kKeuymap F4 WGA FS Accessihility

Figure 3-16 Initial install screen, F6 boot command line

See help.ubuntu.com/community/BootOptions and The Linux BootPrompt-HowTo
for more information.

Disables ACPI (Advanced Configuration and Power Interface). Useful for systems
that do not support ACPI or that have problems with their ACPI implementation.
Also acpi=off. The default is to enable ACPI.

Disables APIC (Advanced Programmable Interrupt Controller). The default is to
enable APIC.

Disables APM (Advanced Power Management). Also apm=off. The default is to
enable APM.

Changes the way the kernel handles interrupts.
Disables local APIC (above). The default is to enable local APIC.

VIRTUAL CONSOLES

While it is running, ubiquity opens a shell on each of the six virtual consoles (also
called virtual terminals; page 136). You can display a virtual console by pressing
CONTROL-ALT-Fx, where x is the virtual console number and Fx is the function key that
corresponds to the virtual console number.

At any time during the installation, you can switch to a virtual console and give shell
commands to display information about processes and files. Do not give commands

ADVANCED INSTALLATION 65

——] [!!] Enter rescue mode —————

RESCUE Dperations

ute a shell in / 1
Execute a shell in the installer enwironment
Reinstall GRUB hoot loader
Choose a different root file system
Reboot the system

<Go Back:

Figure 3-17 The list of rescue operations

that change any part of the installation process. To switch back to the graphical
installation screen, press CONTROL-ALT-F7. To switch back to the textual (pseudographi-
cal) installation screen, press CONTROL-ALT-F1.

THE ALTERNATE CD INITIAL INSTALL SCREEN MENU

Install in text mode

Install a command-
line system

Rescue a broken
system

The Alternate CD uses the textual installer (page 67) to install a system that uses a
graphical interface or one that uses a textual interface. It is not a live CD (does not
bring up a desktop to install from), does not require as much RAM to install
Ubuntu, and presents more installation options. The Alternate CD initial install
screen takes advantage of the functions keys described on page 62 and accepts the
boot parameters described on page 63. This screen has the following selections that
are not present on the live/install Desktop CD initial install screen (page 62):

Installs a graphical Ubuntu system using the textual installer. For more information
refer to “The Ubuntu Textual Installer” on page 67.

Installs a textual Ubuntu system (no graphical interface, no desktop, only a com-
mand line interface) using the textual installer. For more information refer to “The
Ubuntu Textual Installer” on page 67.

Brings up Ubuntu but does not install it. After detecting the system’s disks and parti-
tions, the system enters recovery mode and allows you to select the device you want
to mount as the root filesystem. Once you select a device, recovery mode displays a
list of rescue operations (Figure 3-17):

¢ Execute a shell in /dev/xxx Mounts the device you selected (/dev/xxx) as
/ (root) and spawns a root shell (e.g., dash or bash; Chapter 7) if a shell is
available on the mounted device. You are working with root privileges
(page 88) and can make changes to the filesystem on the device you
selected. You have access only to the shell and utilities on the mounted file-
system. You may be able to mount other filesystems. If the mounted file-
system does not include a shell, you must use the next selection. Give an
exit command to return to the list of rescue operations.

¢ Execute a shell in the installer environment Mounts the device you
selected as /target and spawns a root dash shell (Chapter 7). You are

66 CHAPTER3 STEP-BY-STEP INSTALLATION

working in the installer environment with root privileges (page 88).
You have access to dash and the many utilities available in the installer
environment. The root filesystem is on a RAM disk (page 1056) and
you can use nano to edit files. You can make changes to the filesystem
on the device you selected, which is mounted on /target. You can mount
other filesystems. Give an exit command to return to the list of rescue
operations.

¢ Choose a different root file system Returns to the previous step where
you can select a filesystem to work with.

® Reboot the system Reboots the system. Remove the CD if you want to
boot from the hard disk.

THE SERVER CD INITIAL INSTALL SCREEN MENU

The Server CD uses the textual installer (page 67) to install a minimal system with a
textual interface and no open ports. The installed system is appropriate for a server.
The initial install screen takes advantage of the functions keys described on page 62
and accepts the boot parameters described on page 63. The Server CD initial install

£ vbunty

Start or install Ubuntu

Start Ubuntu in safe graphics mode
11 Install with driver update COD

Install in text mode

Install a server

0EM install (for manufacturers)

Install a command-1ine sustem

Check CD for defects

F1 Help FZ Language F3 kKeymap Fd4 WGA FS Accessibility Fe Other Options

Figure 3-18 The DVD initial install screen

ADVANCED INSTALLATION 67

Install to the hard
disk

Rescue a broken
system

THE DVD

screen has the following selections that are not present on the live/install Desktop
CD initial install screen (page 62):

Installs a textual Ubuntu server system using the textual installer. For more informa-
tion refer to “The Ubuntu Textual Installer” on page 67. At the end of the normal
installation, the installer displays the Software selection screen, which asks if you
want to install a DNS server (Chapter 25) and/or a LAMP server. LAMP stands for
Linux (which you are installing), Apache (Chapter 27), MySQL, and PHP. Use the
ARROW keys to move the highlight to the space between the brackets ([]) and press the
SPACEBAR to select either or both of the choices.

Brings Ubuntu up in recovery mode (page 65).

The Ubuntu DVD does everything each of the CDs does and includes all software
packages supported by Ubuntu, not just those installed by default. If the system you
are installing is not connected to the Internet, you can install software packages
from the DVD but you will have no way to update the system. The initial install
screen takes advantage of the functions keys described on page 62 and accepts the
boot parameters described on page 63. Figure 3-18 shows the DVD initial install
screen. See the descriptions of the CD initial install screens on pages 62, 65, and 66
for information on the selections on this screen.

THE UBUNTU TEXTUAL INSTALLER

The Ubuntu textual installer gives you more control over the installation process
than the Ubuntu graphical installer does (page 48). The textual installer displays a
pseudographical interface and uses fewer system resources, including less RAM than
the graphical installer does. You can install either a graphical (desktop) or textual
(command line) system using the textual installer, depending on which CD/DVD you
use and which selection you make from the initial install screen: Install in text mode
installs a graphical system; Install a server and Install a command-line system install
textual systems.

Many of the screens that the textual installer displays parallel the screens displayed
by the graphical installer. Within the textual installer’s screens, TAB moves between
items, ARROW keys move between selections on a list, and RETURN activates the high-
lighted selection and causes the installer to display the next screen. A few screens
include brackets ([]) that function similarly to check boxes; they use an asterisk in
place of a tick. Use the ARROW keys to move the highlight to the space between the
brackets and press the SPACEBAR to place an asterisk between the brackets and select
the adjacent choice. Press the SPACE bar again to remove the asterisk.

68 CHAPTER3 STEP-BY-STEP INSTALLATION

Figure 3-19 The Ubuntu installer main menu

The Ubuntu installer main menu (the contents of this menu varies—Figure 3-19
shows an example) allows you to go directly to any step of the installation process
or enter recovery mode (see “Rescue a broken system” on page 65). At the lower
left of most textual installer screens is <Go Back>. See Figure 3-20 for an example.
Use the 18 key to highlight this item and press RETURN to display the Ubuntu installer
main menu. You may have to back up through several screens to display this menu.

The first screen the textual installer displays is Choose a language (Figure 3-20). Use
the UP and DOWN arrow keys to select the language you want the installer to use. You
can type the first letter of the language to move the highlight to the vicinity of the
language you want to choose. This language will be the default language for the
installed system; you can change the default once the system is installed (page 132).
Press RETURN to select the highlighted language and display the next screen.

The installer steps through a series of screens, each of which has an explanation and
asks a question. Use the ARROW keys and/or TAB key to highlight an answer or selection
and press RETURN on each of the screens. After a few screens, the installer detects and
installs programs from the CD/DVD, detects the network hardware, and configures
it with DHCP (if available).

As it is configuring the network, the installer asks you for the hostname of the system
you are installing. For use on a local network and to connect to the Internet with a Web
browser or other client, you can make up a simple name. If you are setting up a server,
see “FQDN” on page 847 for information on names that are valid on the Internet.

ADVANCED INSTALLATION 69

Figure 3-20 The Choose a language screen

After this step, the installer continues detecting hardware, starts the partitioner, and
displays the Partitioning method screen (Figure 3-21). Many of the selections avail-
able from the textual partitioner parallel those available from the graphical parti-
tioner. This section describes how to use the textual partitioner to partition a hard
disk manually. See page 56 for a description of guided partitioning.

Figure 3-21 The Partitioning method screen

70 CHAPTER3 STEP-BY-STEP INSTALLATION

Creating a partition
table

Creating a partition

| [11]1 Partition disks |

This is an overview of your currently configured partitions and mount
points. Select a partition to modifu its settings (file sustem, mount
point, etc.), a free space to create partitions, or a dewice to
initialise its partition table.

Guided partitioning
Help on partitioning

) - 214.7 GE WMware, VHMware Wirtual S

Undo changes to partitions
Finish partitioning and w-ite changes to disk

<o Back:

Figure 3-22 The Partition overview screen |

MANUAL PARTITIONING

When you select Manual from the Partitioning method screen (Figure 3-21), the textual
partitioner displays the Partition overview screen, which lists the hard disks in the sys-
tem and partitions on those disks. If a hard disk has no partitions, the partitioner dis-
plays only information about the hard disk. Figure 3-22 shows a single 200+-megabyte
hard disk (highlighted) that has no partition table (and no partitions).

If you want to set up RAID, see page 73 before continuing.

If the Partition overview screen shows no partitions and no free space on a hard disk, as
it does in Figure 3-22, the hard disk does not have a partition table: You need to create
one. If this screen shows at least one partition or some free space, the disk has a parti-
tion table and you can skip this step and continue with “Creating a partition” below.

To create a partition table, highlight the disk you want to create a partition table on
and press RETURN. The installer asks if you want to create a new partition table on the
device and warns that doing so will destroy all data on the disk. Highlight Yes and
press RETURN. The installer displays the Partition disks screen showing the disk with a
single block of free space as large as the disk (Figure 3-23).

To create a partition, highlight the line with FREE SPACE on it and press RETURN. The
partitioner asks how you want to use the free space; highlight Create a new partition
and press RETURN. Next the partitioner asks you to specify the size of the new parti-
tion. You can enter either a percentage (e.g., 50%) or a number of gigabytes fol-
lowed by GB (e.g., 30 GB). Press RETURN. The partitioner then asks you to specify the
type of the new partition (primary or logical; page 31) and asks whether you want to
create the partition at the beginning or the end of the free space. It does not usually
matter where you create the partition. After answering each of these questions, press
RETURN. The partitioner then displays the Partition settings screen (Figure 3-24).

To change a setting on the Partition settings screen, use the ARROW keys to move the
highlight to the setting you want to change and press RETURN. The partitioner displays
a screen that allows you to change the setting.

ADVANCED INSTALLATION 71

Specifying a
partition type
(Use as)

Specifying a mount
point

Figure 3-23 The Partition overview screen II

The first line, labeled Use as, allows you to specify the type of filesystem the
installer creates on the partition. This setting defaults to ext3, which is a good
choice for most normal filesystems. If you want to change the filesystem type, move
the highlight to this line and press RETURN; the installer displays the How to use this
partition screen (Figure 3-25 on the next page). You can select swap area (page 32),
RAID (next), LVM (page 35), or another type of filesystem. Table 13-1 on page 570
lists some common types of filesystems. Move the highlight to the selection you
want and press RETURN. The partitioner returns to the Partition settings screen, which
now reflects the selection you made. For a swap area, there is nothing else to set up;
skip to “Done setting up the partition” on the next page.

The mount point defaults to / (root). To change the mount point for the filesystem,
highlight the line labeled Mount point and press RETURN. The partitioner displays a

Figure 3-24 The Partitions settings screen

72 CHAPTER 3 STEP-BY-STEP INSTALLATION

The bootable flag

Done setting up
the partition

Write the partitions
to disk

Figure 3-25 How to use this partition screen

screen that allows you to specify a mount point (Figure 3-26). Select a mount point;
if the mount point you want to use is not listed, select Enter manually. Press RETURN.

Typically the only other setting you need to change is the bootable flag. Turn this flag
on for the /boot partition if the system has one; otherwise, turn it on for the / (root)
partition. To change the state of the bootable flag, highlight the line labeled Bootable
flag on the Partition settings screen and press RETURN. After a moment, the partitioner
redisplays the screen showing the changed state of this flag.

Once the partition settings are satisfactory, highlight Done setting up the partition and
press RETURN. The partitioner displays the Partition overview screen showing the new
partition setup. To create another partition, repeat the steps starting with “Creating a
partition” on page 70. To modify a partition, highlight the partition and press RETURN.

When you are satisfied with the design of the partition table(s), highlight Finish par-
titioning and write changes to disk and press RETURN. After giving you another chance
to back out, the partitioner writes the partitions to the hard disk.

Figure 3-26 Mount point screen

ADVANCED INSTALLATION 73

Time zone, user
account, and video
modes

Figure 3-27 The partitioner ready to set up RAID

The installer continues by asking which time zone the computer is in and if the sys-
tem clock is set to UTC (page 1067). It then asks you to set up a user account and
continues installing the system. Finally the installer asks you to select which video
modes the X server will use. If you leave all entries unmarked, the X server uses the
highest resolution the monitor is capable of displaying.

The installer continues to install software and then finishes the installation. When
the installer displays the Installation Complete window, remove the CD/DVD and
click Restart now to reboot the system.

SETTING UP A RAID ARRAY

To set up a RAID array (page 34), first create two or more partitions of the same
size. Usually, these partitions will be on different hard disks. You create RAID parti-
tions as explained in the preceding section, except instead of making the partitions
type ext3 or swap, you declare each to be a RAID volume. (RAID partitions are
referred to as volumes.) Once you have two or more RAID volumes, the partitioner
allows you to combine these volumes into a RAID array that looks and acts like a
single partition.

The following example uses 100 gigabytes from each of two new hard disks to set
up a 100-gigabyte RAID 1 array that is mounted on /home. Follow the instructions
on page 70 to create a new partition table on each hard disk. Then create two 100-
gigabyte partitions, one on each disk. When the partitioner displays the How to use
this partition screen (Figure 3-25, page 72), follow the instructions on page 71 and
specify a partition type of physical volume for RAID.

Figure 3-27 shows the partitioner screen after setting up the RAID volumes. Once
you have at least two RAID volumes, the partitioner adds the Configure software
RAID selection as the top line of its menu (highlighted in Figure 3-27).

74 CHAPTER 3 STEP-BY-STEP INSTALLATION

{ [11] Partition disks ¢

You have chosen to create an RAIDL array with 2 active devices.

Please choose which partitions are active devices. You must select
exactly 2 partitions.

Active devices for the RAIDL multidisk dewice:

<Go Back> <Continue>

Figure 3-28 Specifying the active devices in the RAID array

Highlight Configure software RAID, press RETURN, and confirm you want to write
changes to the hard disk. From the next screen, select Create MD device (MD stands
for multidisk) and press RETURN. Then select RAID 0, 1, or 5 and press RETURN. The dif-
ferent types of RAID arrays are described on page 35. The partitioner then asks you
to specify the number of active devices (2) and the number of spares (0) in the RAID
array. The values the partitioner enters in these fields are based on your previous
input and are usually correct. Next select the active devices for the RAID array (use
the SPACEBAR to put an asterisk before each device; Figure 3-28) and press RETURN.

Select Finish from the next screen (the one that asks if you want to create an MD
device again) and press RETURN. Now you need to tell the installer where to mount the
RAID array. Highlight the RAID array. In the example, this line contains #1 100.0
GB FREE SPACE (this line is highlighted in Figure 3-29, but shown after the parti-
tion is created). Press RETURN. (If the RAID array line does not include the words
FREE SPACE and does not show a partition, highlight the RAID array line, press
RETURN, highlight Delete the Partition, and press RETURN. The RAID array line should
now include FREE SPACE.) Set up this partition as you would any other by follow-
ing the instructions under “Creating a partition” on page 70. In the example, the
full 100 gigabytes is used for an ext3 filesystem mounted on /home.

To complete this example, create a bootable / (root) partition using the rest of the
free space on the first drive and a 4-gigabyte swap partition on the second drive.
Figure 3-29 shows the Partition overview screen that includes these changes. High-
light Finish partitioning and write changes to disk and press RETURN.

THE X WINDOW SYSTEM

If you are installing a graphical desktop environment such as GNOME, you installed
the X.org (x.org and freedesktop.org) implementation of the X Window System
when you installed Ubuntu. The X Window System release X11R7.2 comprises
almost 50 software packages. The X configuration files are kept in /etc/X11; the
configuration file that guides the initial setup is /etc/X11/xorg.conf. You can edit

THE X WINDOW SYSTEM 75

Figure 3-29 The finished partition tables

xorg.conf graphically using the Screen and Graphics Preferences window (discussed
next) or you can edit it manually using a text editor (page 77).

displayconfig-gtk: CONFIGURES THE DISPLAY

tip

Specifying monitors

Once the (graphical) system is installed, the Screen and Graphics Preferences win-
dow (Figure 3-30 on the next page) enables you to configure X.org, including spec-
ifying a monitor type and video (graphics) card. To display this window, select Main
menu: System= Administration=>Screens and Graphics or give the command
gksudo displayconfig-gtk from a terminal emulator or Run Application window
(ALT-R2). This utility modifies the xorg.conf file.

Back up xorg.conf

Before you make any changes to /etc/X11/xorg.conf, whether graphically or manually, make a
backup copy of this file. If you run into problems with the graphical interface, you can bring the
system up in recovery mode (page 512), copy the backup over the new xorg.conf, and reboot the
system.

The Screen tab of the Screen and Graphics Preferences window allows you to spec-
ify the model, resolution, and frequency of one or two monitors. If you specify two
monitors, it enables you to specify one as the primary monitor and to describe the
spacial relationship of the two monitors. Click Screen 1 on the left of the window to
specify the characteristics of one monitor; click Screen 2 to specify the other. If there
is only one monitor, click the radio button labeled Disabled for one of the monitors.

76 CHAPTER3 STEP-BY-STEP INSTALLATION

Specifying a
graphics card

= SeraEmAnaGT PYeTETentes
Location: l = @
Graphies card
|| screen 1 | Model: [LCD Panel 1024x768 |§_I|
"
creen 2 Resolution: [1024><768 T | at [60 Hz =
Orientation:
@ Default screen
I Test] I anncel I w‘ﬂQK I

Figure 3-30 The Screen and Graphics Preferences window, Screen tab

Normally the system probes the monitors and fills in the values in this window. If
these values are missing, click the box labeled Model. The displayconfig-gtk utility dis-
plays the Choose window. Specify the manufacturer and model of the monitor in this
window. If an appropriate model is not listed, scroll to the top of the Manufacturer
list and click Generic. From the Model list, select an LCD or conventional monitor
with the maximum resolution of the monitor attached to the system. Click OK. You
can specify a lower default resolution and the frequency of the monitor from the two
spin boxes labeled Resolution and at. No harm is done if you specify a lower resolu-
tion than the monitor is capable of displaying, but you can damage an older monitor
by specifying a resolution higher than the monitor is capable of displaying.

When you are done, click Test at the bottom of the window to check whether the
new settings work. The displayconfig-gtk utility displays the desktop using the new
settings with a dialog box asking Do you want to keep the current configuration?
Click Cancel or wait 15 seconds to keep the old configuration; click Keep configuration
to keep the new configuration.

Next click the Graphics Card tab (Figure 3-31). The system normally probes for the
model of video card and enters an appropriate selection in the box labeled Driver. You
can manually select a graphics card by clicking the box labeled Driver; displayconfig-
gtk opens Choose Graphics Card Driver window (also in Figure 3-31). Near the top of
this window are two radio buttons that enable you to select a driver by specifying the
manufacturer and model of the graphics card in the system or by specifying the name
of the driver you want to use. Click OK. The displayconfig-gtk utility generates an
xorg.conf file with the information from the window.

THE X WINDOW SYSTEM 77

[=] Screen and Graphics Preferences [=13<]

Location: [2 l @

Graphics card (NVIDIA GeForce4 (generic))

Driver: [nv - nvidia Riva 128, RIVA TNT, GeForce, nF.., !]
Video Memory:
=l Ch Graphics Gand DTl 5

() Choose driver by name:

Manufacturer Model
Leadtek CoTT T e

Matrox Geforce2 ddr (generic)

Miro Geforce2 integrated (gene

Gefeorce3 (generic)
Geforce3 (xbox) 1'5 oK

Geforcad (nansric)

NVIDIA
NeoMagic

Figure 3-31 The Screen and Graphics Preferences window, Graphics Card tab

THE xorg.conf FILE

If you choose to edit /etc/X11/xorg.conf manually, read the notes at the top of the
file. You may also want to refer to the xorg.conf man page. The xorg.conf file com-
prises sections that can appear in any order. Each section is formatted as follows:

Section "name"
entry

EndSection

where name is the name of the section. A typical entry occupies multiple physical
lines but is one logical line, consisting of multiple sets of a keyword followed by zero
or more integer, real, or string arguments. Keywords in these files are not case sensi-
tive; underscores (_) within keywords are ignored. Most strings are not case sensitive,
and SPACEs and underscores in most strings are ignored. All strings must appear within
double quotation marks.

The Option keyword provides free-form data to server components and is followed
by the name of the option and optionally a value. All Option values must be
enclosed within double quotation marks.

Boolean Options take a value of TRUE (1, on, true, yes) or FALSE (0, off, false,
no); no value is the same as TRUE. You can prepend No to the name of a Boolean
Option to reverse the sense of the Option.

78 CHAPTER 3 STEP-BY-STEP INSTALLATION

The following sections can appear in an xorg.conf file:

ServerFlags Global Options (optional)
ServerLayout Binds Screen(s) and InputDevice(s)
Files Locations of configuration files
Module Modules to be loaded (optional)
InputDevice Keyboard(s) and pointer(s)

Monitor Monitor(s)

Device Video card(s)

Screen Binds device(s) and monitor(s)
VideoAdaptor Configures the Xv extension (optional)
Modes Video modes (optional)

DRI Direct Rendering Infrastructure (optional)
Vendor Vendor-specific information (optional)

This chapter covers the sections you most likely need to work with: ServerLayout,
InputDevice, Monitor, Device, and Screen.

ServerLayout SECTION

The ServerLayout section appears first in some xorg.conf files because it summa-
rizes the other sections that specify the server. The following ServerLayout section
names the server single head configuration and specifies that the server comprises
the sections named Screen0, Mouse0, Keyboard0, and DevInputMice.

The term core in this file means primary; there must be exactly one CoreKeyboard
and one CorePointer. The AlwaysCore argument indicates the device reports core
events and is used here to allow a non-USB mouse and a USB mouse to work at the
same time. As a result, you can use either type of mouse interchangeably without
modifying the xorg.conf file:

Section "ServerLayout"
Identifier "single head configuration”
Screen @ "Screend" 0 0
InputDevice "Mouse@" "CorePointer"
InputDevice "Keyboard@" "CoreKeyboard"
InputDevice "DevInputMice" "AlwaysCore"
EndSection

Refer to the following sections for explanations of the sections specified in ServerLayout.

InputDevice SECTION

There must be at least two InputDevice sections: one specifying the keyboard and one
specifying the pointer (usually a mouse). An InputDevice section has the following format:

Section "InputDevice"
Identifier "id_name"
Driver "drv_name"
options

EndSection

THE X WINDOW SYSTEM 79

where id_name is a unique name for the device and drv_name is the driver to use
for the device. The displayconfig-gtk utility typically creates several InputDevice
sections.

The following section defines a keyboard device named KeyboardO that uses the
kbd driver. The keyboard model is a 105-key PC keyboard. You can change pc105
to microsoft if you are using a U.S. Microsoft Natural keyboard, although the dif-
ferences are minimal.

Section "InputDevice"
Identifier "Keyboardo"

Driver "kbd"
Option "XkbModel1" "pcl@5"
Option "XkbLayout" "us"

EndSection

To change the language supported by the keyboard, change the argument to the
XkbLayout Option to, for example, fr for French.

The next InputDevice section defines a mouse named Mouse0 that uses the mouse
driver. The Device Option specifies a PS2 device. The ZAxisMapping Option maps
the Z axis, the mouse wheel, to virtual mouse buttons 4 and 5, which are used to
scroll a window. For more information refer to “Remapping Mouse Buttons” on
page 258. When set to YES, the Emulate3Buttons Option enables the user of a
two-button mouse to emulate a three-button mouse by pressing the two buttons
simultaneously.

Section "InputDevice"
Identifier "MouseQ"

Driver "mouse"

Option "Protocol" "IMPS/2"
Option "Device" "/dev/psaux"
Option "ZAxisMapping" "4 5"
Option "EmuTate3Buttons" "no"

EndSection

The next InputDevice section is similar to the previous one except that the Device
Option specifies a USB mouse. See “ServerLayout Section” on page 78 for a discus-
sion of this option.

Section "InputDevice"
If the normal CorePointer mouse is not a USB mouse then
this input device can be used in AlwaysCore mode to let you
also use USB mice at the same time.
Identifier "DevInputMice"

Driver "mouse"

Option "Protocol" "IMPS/2"

Option "Device" "/dev/input/mice"
Option "ZAxisMapping" "4 5"
Option "EmuTate3Buttons" "no"

EndSection

80 CHAPTER3 STEP-BY-STEP INSTALLATION

Monitor SECTION

The xorg.conf file must have at least one Monitor section. The easiest way to set up this
section is to use the displayconfig-gtk utility, which either determines the type of monitor
automatically by probing or allows you to select the type from a list of monitors.

Do not guess at values for HorizSync or VertRefresh

If you configure the Monitor section manually, do not guess at the scan rates (HorizSync and Vert-
Refresh). On older monitors, you can destroy the hardware by choosing scan rates that are too high.

The following section defines a monitor named Monitor0. The VendorName and
ModelName are for reference only and do not affect the way the system works.
The optional DisplaySize specifies the height and width of the screen in millime-
ters, allowing X to calculate the dpi (dots per inch) of the monitor. HorizSync
and VertRefresh specify ranges of vertical refresh frequencies and horizontal sync
frequencies for the monitor; these values are available from the manufacturer.
The dpms Option specifies that the monitor is DPMS (page 1034) compliant
(i.e., has built-in energy-saving features).

Section "Monitor"
Identifier "MonitorQ"
VendorName "Monitor Vendor"
Mode1Name "Del1 D1028L"
DisplaySize 360 290
HorizSync 31.0 - 70.0
VertRefresh 50.0 - 120.0
Option "dpms"

EndSection

A Monitor section may mention DDC (Display Data Channel); a monitor can use
DDC to inform a video card about its properties. If you omit or comment out the
HorizSync and VertRefresh lines, X uses DDC probing to determine the proper values.

Device SECTION

The xorg.conf file must have at least one Device section to specify the type of video
card in the system. The VendorName and BoardName are for reference only and do
not affect the way the system works. The easiest way to set up this section is to use the
displayconfig-gtk utility, which usually determines the type of video card by probing.

The following Device section specifies that Videocard0 uses the nv driver and
locates it on the PCI bus:

Section "Device"
Identifier "Videocard@"
Driver "nv"
VendorName "Videocard vendor"
BoardName "NVIDIA GeForce4 (generic)"
BusID "PCI:3:0:0"

EndSection

THE X WINDOW SYSTEM 81

Screen SECTION

The xorg.conf file must contain at least one Screen section. This section binds a
video card specified in the Device section to a display specified in the Monitor
section.

The following Screen section specifies that Screen0 comprises Videocard0 and
Monitor0, both of which are defined elsewhere in the file. The DefaultDepth entry
specifies the default color depth (page 1029), which the Display subsection can
override.

Each Screen section must have at least one Display subsection. The subsection in the
following example specifies a color Depth and three Modes. The Modes specify the
screen resolutions in units of dots per inch (dpi). The first Mode is the default; you
can switch between Modes while X is running by pressing CONTROL-ALT-KEYPAD+ Or
CONTROL-ALT-KEYPAD-. You must use the plus or minus on the numeric keypad when giv-
ing these commands. X ignores invalid Modes.

Section "Screen"
Identifier "Screeno@"

Device "VideocardQ"

Monitor "MonitorQ"

DefaultDepth 24

SubSection "Display"

Depth 24

Modes "1024x768" "800x600" "640x480"
EndSubSection

EndSection

If you omit or comment out the Depth and Modes lines, X uses DDC probing to
determine the optimal values.

MULTIPLE MONITORS

X has supported multiple screens for a long time. X.org supports multimonitor con-
figurations using either two graphics cards or a dual-head card. Both setups are usu-
ally configured the same way because the drivers for dual-head cards provide a
secondary virtual device.

Traditionally each screen in X was treated as a single entity. That is, each window
had to be on one screen or another. More recently the Xinerama extension has
allowed windows to be split across two or more monitors. This extension is sup-
ported by X.org and works with most video drivers. When using Xinerama, you
must set all screens to the same color depth.

For each screen, you must define a Device, Monitor, and Screen section in the
xorg.conf file. These sections are exactly the same as for a single-screen configura-
tion; each screen must have a unique identifier. If you are using a dual-head card,
the Device section for the second head is likely to require a BusID value to enable
the driver to determine that you are not referring to the primary display.

82 CHAPTER 3 STEP-BY-STEP INSTALLATION

The following section identifies the two heads on an ATI Radeon 8500 card. For
other dual-head cards, consult the documentation provided with the driver (for
example, give the command man mga to display information on the mga driver).

Section "Device"
Identifier "Videocardo"
Driver "radeon"
VendorName "ATI"
BoardName "Radeon 8500"
EndSection
Section "Device"
Identifier "Videocardl"
Driver "radeon"
VendorName "ATI"
BoardName "Radeon 8500"
BusID "PCI:1:5:0"
EndSection

Once you have defined the screens, use the ServerLayout section to tell X where the
screens are in relation to each other. Each screen is defined in the following form:

Screen [ScreenNumber] "Identifier" Position

The ScreenNumber is optional. If omitted, X numbers screens in the order they are
specified, starting with 0. The Identifier is the same Identifier used in the Screen sec-
tions. The Position can be either absolute or relative. The easiest way to define
screen positions is to give one screen an absolute position, usually with the coordi-
nates of the origin, and then use the LeftOf, RightOf, Above, and Below keywords
to indicate the positions of the other screens:

Section "ServerlLayout"

Identifier "MuTltihead Tayout"
Screen @ "Screen@" LeftOf "Screenl"
Screen 1 "Screenl" 0 0
InputDevice "Mouse@" "CorePointer"
InputDevice "Keyboard@" "CoreKeyboard"
InputDevice "DevInputMice" "AlwaysCore"
Option "Xinerama" "on"
Option "Clone" "off"

EndSection

By default, Xinerama causes multiple screens to act as if they were a single screen.
Clone causes each of the screens to display the same image.

gdm: DISPLAYS A GRAPHICAL LOGIN

Traditionally users logged in on a textual terminal and then started the X server. Ubuntu
Linux uses the GNOME display manager (gdm) to provide a graphical login. The Login
Window Preferences window enables you to configure the login presented by gdm. To
display this window, select Main menu: System= Administration=Login Window or
give the command gksudo gdmsetup from a terminal emulator or Run Application

EXERCISES 83

window (ALT-R2). The gdmsetup utility edits /etc/gdm/gdm.conf-custom, which aug-
ments the heavily commented /etc/gdm/gdm.conf file.

You can make many changes to the system from the Login Window Preferences
window. For example, you can alter the appearance and functionality of the login
screen, control whether remote logins are allowed (they are not by default), set up
an automatic login, and control TCP connections to the X server (they are denied
by default; page 255).

CHAPTER SUMMARY

Most installations of Ubuntu Linux begin by booting from the live/install Desktop
CD/DVD and running a live session that displays a GNOME desktop. To start the
installation, double-click the object on the desktop labeled Install.

Ubuntu provides a graphical installer (ubiquity) on the live/install Desktop CD/DVD;
it offers a textual installer on the Alternate and Server CDs and the DVD. Both
installers identify the hardware, build the filesystems, and install the Ubuntu Linux
operating system. The ubiquity installer does not write to the hard disk until it dis-
plays the Ready to install screen or warns you it is about to write to the disk. Until
that point, you can back out of the installation without making any changes to the

hard disk.

A dual-boot system can boot one of two operating systems—frequently either Win-
dows or Linux. You can use the GNOME Partition Editor from a live session to
examine the contents of a hard disk and to resize partitions to make room for
Ubuntu when setting up a dual-boot system. During installation from a live session,
you can use the ubiquity partitioner to add, delete, and modify partitions.

Ubuntu uses the X.org X Window System version X11R7.2. The /etc/X11/xorg.conf
file configures the X server, setting up the monitor, mouse, and graphics card. The
displayconfig-gtk utility is a graphical editor for this file.

The GNOME display manager (gdm) provides a graphical login. The gdmsetup util-
ity configures the login presented by gdm by editing /etc/gdm/gdm.conf-custom,
which augments the heavily commented /etc/gdm/gdm.conf file.

EXERCISES

1. How do you start a live session? List two problems you could encounter
and explain what you would do to fix them.

2. What should you do before the first time you start a live session or install
Ubuntu with a new CD/DVD? How would you do it?

84 CHAPTER 3 STEP-BY-STEP INSTALLATION

3. What is guided partitioning?

4. Without asking any questions, guided partitioning divides the portion of
the disk allotted to Ubuntu into two partitions. One partition is the swap
partition, which can be any size from 512 megabytes to 2 or more
gigabytes. The other partition is designated as / (root) and contains the
remainder of the disk space.What is ubiquity?

5. Describe the ubiquity partitioner. How does it differ from the partitioner on
the Alternate and Server CDs?

6. When is it beneficial to use an ext2 filesystem instead of an ext3 filesystem?

ADVANCED EXERCISES

7. What is a virtual console? During installation, what can you use a virtual
console for? If the system is displaying a virtual console, how do you dis-
play the graphical installation screen?

8. What would you do to have the system display all the things it is doing as
it boots from a live/install Desktop CD/DVD?

9. Assume you have configured four screens, screen0 through screen3. How
would you specify in xorg.conf that the screen layout is a T shape with the
first screen at the bottom and the other three screens in a row above it?

PART I

GETTING STARTED WITH
UBUNTU LINUX

CHAPTER 4
INTRODUCTION TO UBUNTU LINUX 87

CHAPTER 5
THE LINUX UTILITIES 145

CHAPTER 6
THE LINUX FILESYSTEM 183

CHAPTER 7
THE SHELL 219

85

This page intentionally left blank

IN THIS CHAPTER

Curbing Your Power: root
Privileges/sudo

A Tour of the Ubuntu Linux
Desktop «.ovvviiiiiiiat

The Update Notifier............

Updating, Installing, and
Removing Software Packages. .

Where to Find Documentation . . .
More About LoggingIn.........
What to Do If You Cannot Log In. .

Working from the
Command Line..............

Controlling Windows: Advanced
Operations..........c.......

INTRODUCTION TO
UBUNTU LINUX

One way or another you are sitting in front of a computer that
is running Ubuntu Linux. After describing root privileges, this
chapter takes you on a tour of the system to give you some
ideas about what you can do with it. The tour does not go into
depth about choices, options, menus, and so on; that is left for
you to experiment with and to explore in greater detail in
Chapter 8 and throughout later chapters. Instead, this chapter
presents a cook’s tour of the Linux kitchen: As you read it, you
will have a chance to sample the dishes that you will enjoy
more fully as you read the rest of this book.

Following the tour are sections that describe where to find Linux
documentation (page 124) and offer more about logging in on
the system, including information about passwords (page 132).
The chapter concludes with a more advanced, optional section
about working with Linux windows (page 139).

Be sure to read the warning about the dangers of misusing the
powers of root (sudo) in the next section. Heed that warning,
but feel free to experiment with the system: Give commands,
create files, click objects, choose items from menus, follow the
examples in this book, and have fun.

87

88 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

CURBING

root terminology

Most Linux systems include an account for a user named root. This user has special privileges and
is sometimes referred to as Superuser. On a classic Linux system a user can log in and work as
root by providing the root password.

As installed, Ubuntu has a reot account but no password for the account: The root account is
locked. The next section explains how you can use sudo and provide yourpassword to runacom-
mand with root privileges. This book uses the phrase “working with root privileges” to distinguish
this temporary escalation of privileges from the classic scenario wherein a user can work with root
privileges for an entire session. See page 487 for more information on root privileges.

YOUR POWER: root PRIVILEGES/sudo

When you enter your password to run a program (not when you log in on the
system), or when you use sudo from the command line, you are working with
root privileges and have extraordinary systemwide powers. A person working
with root privileges is sometimes referred to as Superuser or administrator. When
working with root privileges, you can read from or write to any file on the sys-
tem, execute programs that ordinary users cannot, and more. On a multiuser
system you may not be permitted to run certain programs, but someone—the
system administrator—can and that person maintains the system. When you are
running Linux on your own computer, the first user you set up, usually when
you install Ubuntu, is able to use sudo and its graphical counterpart, gksudo, to
run programs with root privileges.

Who is allowed to run sudo?

The first user you set up when you install Ubuntu can administer the system: This user can
use sudo to execute any command. When you add user accounts, you can specify whether
they are allowed to administer the system. See page 658 and Figure 17-2 on page 659 for
more information.

In this chapter and in Chapter 8, when this book says you have to enter your password, it assumes
you have permission to administer the system. If not, you must get an administrator to perform
the task.

There are two primary ways to gain root privileges. First, when you start a program
that requires root privileges, a dialog box pops up asking you to Enter your pass-
word to perform administrative tasks. After you enter your password, the program
runs with root privileges. Second, if you use the sudo utility (for textual applica-
tions; page 490) or gksudo utility (for graphical applications; page 491) from the
command line (such as from a terminal emulator; page 114) and provide your pass-
word, the command you enter runs with root privileges. In both cases you cease
working with root privileges when the command finishes or when you exit from the
program you started with root privileges. For more information refer to “Running
Commands with root Privileges” on page 487.

A TOUR OF THE UBUNTU LINUX DESKTOP 89

Do not experiment while you are working with root privileges

Feel free to experiment when you are nofworking with root privileges. When you are working with
root privileges, do only what you have to do and make sure you know exactly what you are doing.
After you have completed the task at hand, revert to working as yourself. When working with root
privileges, you can damage the system to such an extent that you will need to reinstall Ubuntu
Linux to get it working again.

If you bought your system with Ubuntu installed at the factory

When a manufacturer installs Ubuntu, it cannot set up an account for you (it does not know your
name). Typically, these systems come with the root account unlocked. Ubuntu suggests you not
unlock the root account. To set the system up the way Ubuntu suggests, use users-admin as
explained on page 658 to add a user who will be the system administrator. Make sure to put a tick
in the check box labeled Administer the system in the User Privileges tab (page 658). Then relock
the root account (page 499).

A TOUR OF THE UBUNTU LINUX DESKTOP

GNOME

This section presents new words (for some readers) in a context that explains the
terms well enough to get you started with the Ubuntu desktop. If you would like
exact definitions as you read this section, refer to “GNOME Desktop Terminology”
on page 105 and to the Glossary. The Glossary also describes the data entry widgets
(page 1068), such as the combo box (page 1029), drop-down list (page 1035), list
box (page 1045), and text box (page 1064).

GNOME (www.gnome.org), a product of the GNU project (page 4), is the user-
friendly default desktop manager under Ubuntu Linux. KDE, the K Desktop Envi-
ronment, is a powerful desktop manager and complete set of tools you can use in
place of GNOME. The version of Ubuntu that runs KDE is named Kubuntu. See
page 60 for instructions on installing KDE.

This tour describes GNOME, a full-featured, mature desktop environment that
boasts a rich assortment of configurable tools. After discussing logging in, this sec-
tion covers desktop features—including panels, objects, and workspaces—and
explains how to move easily from one workspace to another. It describes several
ways to launch objects (run programs) from the desktop, how to set up the desktop
to meet your needs and please your senses, and how to manipulate windows. As the
tour continues, it explains how to work with files and folders using the Nautilus
File Browser window, one of the most important GNOME tools. The tour con-
cludes with a discussion of the Update Notifier, the object that allows you to keep a
system up-to-date with the click of a button; getting help; and logging out.

LOGGING IN ON THE SYSTEM

When you boot a standard Ubuntu Linux system, it displays a Login screen
(Figure 4-1) on the system console. At the lower-left corner of the screen is a small

www.gnome.org

90 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

>3

< vbuntu

Figure 4-1 The Ubuntu GNOME login screen

object labeled Options. Click this object or press Fi0 to display the Actions menu.
The selections on this menu allow you to work in a different language (Select Lan-
guage), specify a desktop manager (Session), log in remotely, reboot the system
(Restart), turn the system off (Shut Down), suspend the system, or have the system
hibernate. For more information refer to “The Login Screen” on page 132.

To log in, enter your username in the text box labeled Username and press RETURN.
The label changes to Password. Enter your password and press RETURN. If Ubuntu dis-
plays an error message, try entering your username and password again. Make sure
the CAPS LOCK key is not on (Ubuntu displays a message if it is); the routine that veri-
fies your entries is case sensitive. See page 133 if you need help with logging in and
page 135 if you want to change your password. The system takes a moment to set
things up and then displays a workspace (Figure 4-2).

INTRODUCTION

You can use the desktop as is or you can customize it until it looks and functions
nothing like the initial desktop. If you have a computer of your own, you may want
to add a user and work as that user while you experiment with the desktop. When
you figure out which features you like, you can log in as yourself and implement
those features. That way you need not concern yourself with “ruining” your desk-
top and not being able to get it back to a satisfactory configuration.

Panels and objects When you log in, GNOME displays a workspace that includes Top and Bottom panels

(bars) that are essential to getting your work done easily and efficiently (Figure 4-2).
Each of the bars holds several icons and words called objects. (Buttons, applets, and
menus are all types of objects.) When you click an object, something happens.

A TOUR OF THE UBUNTU LINUX DESKTOP 91

Workspaces and
the Desktop

<2 Applications Rlaces 3 Live session user = @ Fri Nov 16, 1:46 AM !
3 Accessories 4
oD Firefox Web Browser
&2 Graphics » .

./ Internet » Main menu

|4 Office » () Evelution Clock

oL -

B0 Sound & Video » T OpenOffice.org Database LOg out

T Add/Remove %) OpenOffice.org Presentation

%6 OpenDffice.org Spreadsheet

°_ OpenOffice, org Word Processor

Create and edit text and graphics in
letters, reports, documents and Web

pages,
\Tooltip

Trash

Workplace switcher\

A

-

Figure 4-2 The initial workspace

A panel does not allow you to do anything you could not do otherwise, but rather
collects objects in one place and makes your work with the system easier. Because
the panels are easy to configure, you can set them up to hold tools you use fre-
quently. You can create additional panels to hold different groups of tools.

What you see displayed on the screen is a workspace. Initially Ubuntu configures
GNOME with two workspaces. The desktop, which is not displayed all at once, is
the collection of all workspaces. “Switching Workspaces” on page 93 describes
some of the things you can do with workspaces.

Do not remove objects or panels yet

You can add and remove panels and objects as you please. Until you are comfortable working with
the desktop and have finished reading this section, however, it is best not to remove any panels
or objects from the desktop.

Click and right-click

This book uses the term click when you need to click the /eft mouse button and right-click when
you need to click the right mouse button. See page 95 to adapt the mouse for left-handed use.

LAUNCHING PROGRAMS FROM THE DESKTOP

Click an object

This section describes three of the many ways you can start a program running from
the desktop.

The effect of clicking an object depends on what the object is designed to do. Click-
ing an object may, for example, start a program; display a menu or a folder; or open
a file, a window, or a dialog box.

92 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

Select from the
Main menu

Use the Run
Application window

j Applications Places System @ (7]
0 Bluetooth Analyzer

[i}y Accessories

»
=} Games v | [Calculator
_"’ Graphics 3 E\ Character Map
< Internet » | LA Dictionary
{4l Office » | &) Disk Usage Analyzer
3

8 Sound & Video «=) Manage Print Jobs
i8] Take Screenshot

Terminal
4 Text Editor

[z) Add/Remove...

Ly
Use the command line
Tomboy Notes

& Tracker Search Tool

Figure 4-3 'The Applications menu, Accessories, Terminal

For example, to start the Firefox Web browser, (left) click the Firefox object (the
blue and orange globe on the Top panel; see Figure 4-2). GNOME opens a window
running Firefox. When you are done using Firefox, click the small x at the right end
of the titlebar at the top of the window. GNOME closes the window.

When you (left) click the date and time near the right end of the Top panel, the
Clock applet displays a calendar for the current month. (If you double-click a date
on the calendar, the object opens the Evolution calendar to the date you
clicked—but first you have to set up Evolution.) Click the date and time again to
close the calendar.

The second way to start a program is by selecting it from a menu. The Main menu
is the object at the left end of the Top panel that includes the words Applications,
Places, and System. Click one of these words to display the corresponding menu.
Each menu selection that holds a submenu displays a small triangle (pointing to
the right) to the right of the name of the menu (Figure 4-3). When you move the
mouse pointer over one of these selections and leave it there for a moment (this
action is called hovering), the menu displays the submenu. When you allow the
mouse cursor to hover over one of the submenu selections, GNOME displays a
tooltip (page 106).

Experiment with the Main menu. Start Solitaire (Main menu: Applications= Games=
Free Cell Solitaire), a terminal emulator (Main menu: Applications= Accessories=
Terminal), and other programs from the Applications menu. The Places and System
menus are discussed on page 110.

Finally, you can start a program by pressing ALT2 to display the Run Application
window (Figure 4-4). As you start to type firefox in the text box at the top of the
window, the window recognizes what you are typing and displays the Firefox logo
and the rest of the word firefox. Click Run to start Firefox.

A TOUR OF THE UBUNTU LINUX DESKTOP 93

ROnARPIicat o =

@
@ [ﬁrefox | *']
] Run in terminal

[> Show list of known applications

I (7 J=C1 cancel

ETY

Figure 4-4 Run Application window

optional
Running textual You can run command line utilities, which are textual (not graphical), from the Run
applications - Applications window. When you run a textual utility from this window, you must put
a tick in the check box labeled Run in terminal (click the box to put a tick in it; click
it again to remove the tick). The tick tells GNOME to run the command in a terminal
emulator window. When the utility finishes running, GNOME closes the window.

For example, type vim (a text-based editor) in the text box, put a tick in the box
labeled Run in terminal, and click Run. GNOME opens a Terminal (emulator) win-
dow and runs the vim text editor in that window. When you exit from vim (press
ESCAPE:q! sequentially to do so), GNOME closes the Terminal window.

You can run a command line utility that only displays output and then terminates.
Because the window closes as soon as the utility is finished running, and because
most utilities run quickly, you will probably not see the output. Type the following
command in the text box to run the df (disk free; page 800) utility and keep the win-
dow open until you press RETURN:

bash -c "df -h ; read"

This command starts a bash shell (Chapter 7) that executes the command line fol-
lowing the —c option. The command line holds two commands separated by a semi-
colon. The second command, read (page 445), waits for you to press RETURN before
terminating. Thus the output from the df —h command remains on the screen until
you press RETURN. Replace read with sleep 10 to have the window remain open for
ten seconds.

SWITCHING WORKSPACES

Workplace Switcher Each rectangle in the Workplace Switcher applet (or just Switcher)—the group of
rectangles near the right end of the Bottom panel—represents a workspace
(Figure 4-2, page 91). When you click a rectangle, the Switcher displays the corre-
sponding workspace and highlights the rectangle to indicate which workspace is
displayed.

94 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

ol WoTKspaceswitcher Pr‘:i‘:re@@

Switcher
() Show only the current workspace

@ show all werkspaces in: |1 rows
Workspaces

Number of workspaces:

Workspace names:

Desk 1
Desk 2
Desk 3
Desk 4

(4

[[] Show workspace names in switcher

Figure 4-5 The Workspace Switcher Preferences window

Click the rightmost rectangle in the Switcher (not the Trash applet to its right).
Next, select Main menu: Preferences=>Mouse. GNOME opens the Mouse Prefer-
ences window. The Switcher rectangle that corresponds to the workspace you are
working in displays a small colored rectangle. This small rectangle corresponds in
size and location within the Switcher rectangle to the window within the work-
space. Click and hold the left mouse button with the mouse pointer on the titlebar
at the top of the window and drag the window to the edge of the desktop. When
you release the mouse button, the small rectangle within the Switcher moves to the
corresponding location within the Switcher rectangle.

Now click a different rectangle in the Switcher and open another application—for
example, the Ubuntu Help Center (click the blue question mark on the Top panel).
With the Ubuntu Help Center window in one workspace and the Mouse Preferences
window in another, you can click the corresponding rectangles in the Switcher to
switch back and forth between the workspaces (and applications).

Right-click to display a Context menu

A context menu is one that is appropriate to its context. When you right-click an object, it displays
an Object Context menu. Each object displays its own context menu, although similar objects have
similar context menus. Most Object Context menus have either a Preferences or Properties selec-
tion. See the adjacent section, “Setting Personal Preferences,” and page 115 for more information
on Object Context menus.

SETTING PERSONAL PREFERENCES

You can set preferences for many objects on the desktop, including those on the panels.

Workspace Switcher To display the Workspace Switcher Preferences window (Figure 4-5), first right-click

anywhere on the Switcher to display the Switcher menu and then select Preferences.

A TOUR OF THE UBUNTU LINUX DESKTOP 95

Clock applet

MiBlSEpraTerances) =)

- B

Buttons | Motion |

Mouse Orientation

[] Left-handed mouse

Double-Click Timeout

Timeout; == J=————= 400 milliseconds

Figure 4-6 The Mouse Preferences window, Buttons tab

Specify the number of workspaces you want in the spin box labeled Number of
workspaces or Columns. (The window looks different if you have Visual Effects
[page 103] enabled; in this case change the value in the spin box labeled Columns.)
The number of workspaces the Switcher displays changes as you change the number
in the spin box—you can see the result of your actions before you close the Prefer-
ences window. Four workspaces is typically a good number to start with. Click Close.

The Clock applet has an interesting preferences window. Right-click the Clock
applet (Figure 4-2, page 91) and select Preferences. The resulting window enables
you to customize the date and time the Clock applet displays on the Top panel. The
clock immediately reflects the changes you make in this window.

Different objects display different Preferences windows. Objects that launch pro-
grams display Properties windows and do not have Preferences windows. Experi-
ment with different Preferences and Properties windows and see what happens.

MOUSE PREFERENCES

Left-handed mouse

The Mouse Preferences window (Figure 4-6) enables you to change the characteristics
of the mouse to suit your needs. To display this window, select Main menu: System=
Preferences=Mouse or give the command gnome-mouse-properties from a terminal
emulator or Run Application window (ALT-F2). The Mouse Preferences window has
two tabs: Buttons and Motion (and a third, Touchpad, on a laptop).

To change the orientation of the mouse buttons for use by a left-handed person, put
a tick in the check box labeled Left-handed mouse. If you change the setup of the
mouse buttons, remember to reinterpret the descriptions in this book accordingly.
When this book asks you to click the left button or does not specify a button to click,
click the right button, and vice versa. See “Remapping Mouse Buttons” on page 258
if you want to change the orientation of the mouse buttons from the command line.

96 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

Double-click
timeout

Use the Double-Click Timeout slider in the Buttons tab to change the speed with
which you must double-click a mouse button to have the system recognize your
action as a double-click rather than as two single clicks.

In the Motion tab you can control the acceleration and sensitivity of the mouse. The
Drag and Drop Threshold specifies how far you must drag an object before the sys-
tem considers the action the drag part of a drag and drop.

WORKING WITH WINDOWS

Titlebar

Terminating a
program

To resize a window, move the mouse pointer over an edge of the window; the pointer
turns into an arrow. When the pointer is an arrow, you can click and drag the side of
a window. When you position the mouse pointer over a corner of the window, you
can resize both the height and the width of the window at the same time.

To move a window, click and drag the titlebar (the bar across the top of the window
with the name of the window in it). For fun, try moving the window past either side
of the workspace. What happens? The result depends on how Visual Effects
(page 103) is set.

At the right of the titlebar are three icons that control the window (Figure 4-16,
page 112). Clicking the underscore, usually at the left of the set of icons, minimizes
(iconifies) the window so the only indication of the window is the object with the
window’s name in it on the Bottom panel (a Window List applet; page 109). Click
this object to toggle the window between visible and minimized. Clicking the box
icon, usually the middle of the three icons, toggles the window between its maxi-
mum size (maximizes the window) and its normal size. Double-clicking the titlebar
does the same thing.

Clicking the x terminates the program running in the window and closes the win-
dow. In some cases you may need to click several times.

USING NAUTILUS TO WORK WITH FILES

Terms: folder and
directory

Term: File Browser

Nautilus, the GNOME file manager, is a simple, powerful file manager. You can
use it to create, open, view, move, and copy files and folders as well as to execute
programs and scripts. One of its most basic and important functions is to create
and manage the desktop. This section introduces Nautilus and demonstrates the
correspondence between Nautilus and the desktop. See page 260 for more detailed
information on Nautilus.

Nautilus displays the File Browser window, which displays the contents of a folder.
The terms folder and directory are synonymous; “folder” is frequently used in
graphical contexts whereas “directory” may be used in textual or command line
contexts. This book uses these terms interchangeably.

This book sometimes uses the terms File Browser window and File Browser when
referring to the Nautilus File Browser window.

Double-clicking an object in a File Browser window has the same effect as double-
clicking an object on the desktop: Nautilus takes an action appropriate to the object.

A TOUR OF THE UBUNTU LINUX DESKTOP 97

3 Applications Places System @ @ Live session user & & Fri Nov 16, 1:49 AM [&]

. - Bty - Flle Broweer i
Flle Edit View Go Bookmarks Help
untitled
@ e 3 =

Aldar - = =]
folder up Reload Home Computer Search

. 4| | 4||“dubuntu| =Desktop A 100% S |View as lcons ¢

Places=

new file

“d ubuntu .
untitled folder new file
= Desktop

File System
_ Floppy Drive

& Trash =
4 items, Free space: 487.7 MB

Figure 4-7 The desktop with a Nautilus File Browser window

For example, when you double-click a text file, Nautilus opens the file with a text
editor. When you double-click an OpenOffice.org document, Nautilus opens the file
with OpenOffice.org. If the file is executable, Nautilus runs it. If the file is a folder,
Nautilus opens the folder and displays its contents in place of what had previously
been in the window.

THE Desktop DIRECTORY

The files on the desktop are held in a directory that has a pathname (page 189) of
/home/username/Desktop, where username is your login name. The simple direc-
tory name is Desktop. When you select Main menu: Places= Desktop, GNOME
opens a File Browser window showing the files on the desktop (Figure 4-7). Initially
there are no files. If you click the pencil and paper object at the left edge near the
top of the File Browser window, Nautilus displays in the Location text box the
pathname of the directory it is displaying.

To see the correspondence between the graphical desktop and the Desktop direc-
tory, right-click anywhere within the large clear area of the Desktop File Browser
window. Select Create Document=>Empty File. Nautilus creates a new file on the
desktop and displays its object in this window. When you create this file, GNOME
highlights the name new file under the file: You can type any name you like at this
point. Press RETURN when you are finished entering a name. If you double-click the
new file, Nautilus assumes it is a text file and opens the file in a gedit window. (The
gedit utility is a simple text editor.) Type some text and click Save on the toolbar.
Close the window from the File menu or by clicking the x at the right end of the
titlebar. You have created a text document on the desktop. You can double-click the
document object on the desktop or in the File Browser window to open and edit it.

Next, create a folder by right-clicking the root window (any empty part of the
workspace) and selecting Create Folder. You can name this folder in the same way
that you named the file you created. The folder object appears on the desktop and
within the Desktop File Browser window.

On the desktop, drag the file until it is over the folder; the folder opens. Release the
mouse button to drop the file into the folder; GNOME moves the file to the folder.

98 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

optional
Browse/Save
window

- SHVES @]
Name: [memo]
Save in folder: l_ Documents =]

D Browse for other folders

[File type

[] Save with password

Figure 4-8 The Save window

Again on the desktop, double-click the folder you just moved the file to. GNOME
opens another File Browser window, this one displaying the contents of the folder
you clicked on. The file you moved to the folder appears in the new window. Now
drag the file from the window to the previously opened Desktop File Browser win-
dow. The file is back on the desktop, although it may be hidden by one of the File
Browser windows.

Next, open a word processing document by selecting Main menu: Applications=
Office= OpenOffice.org Word Processor. Type some text and click the floppy disk
icon or select menubar: File>Save to save the document. OpenOffice.org displays
a Save window (Figure 4-8). Type the name you want to save the document as
(use memo for now) in the text box labeled Name. You can specify the directory
in which you want to save the document in one of two ways: by using the drop-
down list labeled Save in folder or by using the Browse for other folders section of
the Save window.

Click the triangle to the left of Browse for other folders to open and close this sec-
tion of the window. Figure 4-8 shows the Save window with this section closed. With
the Browse for other folders section closed, you can select a directory from the drop-
down list labeled Save in folder. This technique is quick and easy, but presents a lim-
ited number of choices of folders. By default, it saves the document in Documents
(/home/username/Documents). If you want to save the document to the desktop,
click Desktop in this drop-down list and then click Save. OpenOffice.org saves the
document with a filename extension of .odt, which indicates it is an OpenOffice.org
word processing document. The object for this type of file has some text and a pic-
ture in it.

With the Browse for other folders section opened, the Save window grays out the
drop-down list labeled Save in folder and expands the Browse for other folders sec-
tion, as shown in Figure 4-9. This expanded section holds two large side-by-side list
boxes: Places and Name. The list box labeled Places displays directories and loca-
tions on the system, including File System. The list box labeled Name lists the files
within the directory highlighted in Places.

A TOUR OF THE UBUNTU LINUX DESKTOP 99

The Desktop
directory is special

- E5ve) =

Name: [memu‘ l

=~ Browse for other folders

E] Create Folder

Places 2| Name ~ | Modified
:E;“ ;Il);‘;\:top (=5 gconfd-root Today at 09:54
L File Systern 5 keyring-NxQsGZ Today at 08:48
_ Floppy Drive (=5 orbit-mark Today at 12:32
=2 Metwork Servers =5 erbit-root Today at 09:54

> & ssh-zllGE13126 Todav at 08:48 |[*
OpenDocument Text (.odt) =

> File type

[] Save with password

Figure 4-9 A Save window with Browse for other folders open

The Browse for other folders section of the Browse/Save window allows you to look
through the filesystem and select a directory or file. GNOME utilities and many
applications use this window, although sometimes applications call it a Browse win-
dow. In this example, OpenOffice.org calls it a Save window and uses it to locate
the directory to save a document in.

Assume you want to save a file in the /tmp directory. Click File System in the list
box on the left; the list box on the right displays the files and directories in the root
directory (/; see “Absolute Pathnames” on page 189 for more information). Next,
double-click tmp in the list box on the right. The button(s) above the list box on the
left change to reflect the directory the list box on the right is displaying. Click Save.

The buttons above the list box on the left represent directories. The list box on the
right displays the directories found within the directory named in the highlighted
(darker) button. This directory is the one you would save the file to if you clicked
Save. Click one of these buttons to display the corresponding directory in the list
box on the right and then click Save to save the file in that directory.

When you have finished editing the document, close the window. If you have made
any changes since you last saved it, OpenOffice.org asks if you want to save the
document. If you choose to save it, OpenOffice.org saves the revised version over
(in the same file as) the version you saved previously. Now the memo.odt object
appears on the desktop and in the Desktop File Browser window. Double-click
either object to open it in OpenOffice.org.

In summary, the Desktop directory is like any other directory, except that GNOME
displays its contents on the desktop (in every workspace). It is as though the desk-
top is a large, plain Desktop File Browser window. You can work with the Desktop

100 CHAPTER4 INTRODUCTION TO UBUNTU LINUX

directory because it is always displayed. Within the GUL, you must use a utility, such
as Nautilus, to display and work with the contents of any other directory.

SELECTING OBJECTS

The same techniques select one or more objects in a File Browser window or on the
desktop. Select an object by clicking it once; GNOME highlights the object. Select
additional objects by holding down the CONTROL key while you click each object. You
can select a group of adjacent objects by highlighting the first object and then, while
holding down the SHIFT key, clicking the last object; GNOME highlights all objects
between the two objects you clicked. Or, you can use the mouse pointer to drag a
box around a group of objects.

To experiment with these techniques, open a File Browser window displaying your
home folder. Display the Examples folder by double-clicking it. Select a few objects,
right-click, and select Copy. Now move the mouse pointer over an empty part of the
desktop, right-click, and select Paste. You have copied the selected objects from the
Examples folder to the desktop. You can drag and drop objects to move them,
although you do not have permission to move the objects from the Examples folder.

EMPTYING THE TRASH

Selecting File Browser menubar: File>Move to Trash moves the selected (high-
lighted) object to the .Trash directory. Like the Desktop directory, .Trash is a direc-
tory in /home/username. Because its name starts with a period however, it is not
usually displayed. Press CONTROL-H or select File Browser menubar: View= Show Hid-
den Files to display hidden files. For more information refer to “Hidden Filenames”
on page 188.

Because files in the trash take up space on the hard disk (just as any files do), it is a good
idea to remove them periodically. All File Browser windows allow you to permanently
delete all files in the .Trash directory by selecting File Browser menubar: File= Empty
Trash. To view the files in the trash, click the Trash applet (Figure 4-2, page 91). Nauti-
lus displays the Trash File Browser window. Select Empty Trash from the Trash applet
context menu to permanently remove all files from the trash. (This selection does not
appear if there are no files in the trash.) Or you can open the .Trash directory, right-
click an object, and select Delete from Trash to remove only that object (file). You can
drag and drop files to and from the trash just as you can with any other folder.

THE UPDATE NOTIFIER

On systems connected to the Internet, Ubuntu is initially set up to automatically
search for and notify you when software updates are available. GNOME displays
the message Software updates available in a bright dialog box and places the
Update Notifier (Figure 4-10) toward the right end of the Top panel when updates
are available. Clicking this object opens the Update Manager window (Figure 4-10).

A TOUR OF THE UBUNTU LINUX DEskTOoP 101

Update Manager
window

Mark G Sobell €& J7 & ufl Mon Oct 1, 3:16 PM [¥]

Update Notifier

-@ Updat zijfzle) E E E

You can install 10 updates

/—i_
' —}:f Software updates correct errors, eliminate
security vulnerabilities and provide new features.

cups-pdf
V] PDF printer for CUPS =
From version 2.4.6-3ubuntu5 to 2.4.6-3ubuntué (Size: 42 KBJ

gnome-keyring
@ GMNOME keyring services (daesmon and tools)
From version 2.20-0ubuntul to 2.20-0ubuntuz (Size: 87 KB)

gutsy-wallpapers
E Feisty Wallpapers

Ernpa siarnion 01L& +n 0 17 [Cina: 1 =i

Download size: 2.4 MB l 6 - l [Vlnstall e

(1]

P Description of update

Figure 4-10 The Update Notifier and the Update Manager window

You can also open this window by selecting Main menu: System= Administration=
Update Manager or by giving the command update-manager from a terminal emu-
lator or Run Application window (ALT-2).

When the Update Manager window opens, it displays the message Starting Update
Manager; after a moment it tells you how many updates are available. If no updates are
available, this window displays the message Your system is up-to-date. If you have rea-
son to believe the system is not aware of available updates, click Check. The update-
manager asks for your password, reloads its database, and checks for updates again.

If updates are available, click Install Updates. The Update Manager asks for your
password, displays the Downloading Package Files window, and counts the pack-
ages as it downloads them. Next the Update Manager displays the Applying
Changes window with the message Installing software and describes the steps it is
taking to install the packages. When it is finished, the Update Manager displays the
Changes Applied window, which displays the message Update is complete. After
you click Close, the Update Manager again checks for updates and usually displays
the message Your system is up-to-date. Click Close. If the updates require you to
reboot the system or restart a program, an object appears on the Top panel. Click
this object and take the required action as soon as you are ready. For more informa-
tion refer to “Updating, Installing, and Removing Software Packages” on page 119.

102 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

il PPEaranCE BT aT e EnCas, =)

Theme | Background I Fonts l Interface]V\sual Effects |

[P

® [

[*]

Glossy High Contrast Inverse High Contrast Large
Print Inverse

Qopen

=

Mist

l Cgstcmize...

l _E';jnstall.‘. l

Figure 4-11 The Appearance Preferences window, Theme tab

CHANGING APPEARANCES (THEMES)

Themes

Appearance
Preferences window

One of the most exciting aspects of a Linux desktop is the ability it gives you to
change its appearance. You can change not only the backgrounds, but also window
borders (including the titlebar), icons, the buttons that applications use, and more.
To see some examples of what you can do, visit art.gnome.org.

In a GUI, a theme is a recurring pattern and overall look that (ideally) pleases the
eye and is easy to interpret and use. You can work with desktop themes at several
levels. First and easiest is to leave well enough alone. Ubuntu comes with a good-
looking theme named Human. If you are not interested in changing the way the
desktop looks, continue with the next section.

The next choice, which is almost as easy, is to select one of the alternative themes
that comes with Ubuntu. You can also modify one of these themes, changing the
background, fonts, or interface. In addition, you can download themes from many
sites on the Internet and change them in the same ways.

The next level is customizing a theme, which changes the way the theme looks—for
example, changing the icons a theme uses. At an even higher level, you can design
and code your own theme. For more information see the tutorials at art.gnome.org.

The key to changing the appearance of your desktop is the Appearance Preferences
window. Display this window by choosing Main Menu: Systems=Preferences=
Appearances or by right-clicking the root window (any empty space on a workspace)

A TOUR OF THE UBUNTU LINUX DESkTOP 103

Visual effects

and selecting Change Desktop Background. The Appearance Preferences window
has five tabs:

e The Theme tab (Figure 4-11) enables you to select one of several themes.
Click a theme and the workspace immediately reflects the use of that
theme. The Human theme is the default Ubuntu theme; select this theme to
make the workspace appear as it did when you installed the system. Once
you select a theme, you can click Close or you can click the other tabs to
modify the theme.

The Background tab enables you to specify a wallpaper or color for the
desktop background. To specify a wallpaper, click one of the samples in
the Wallpaper frame or click Add and choose a file—perhaps a picture—
you want to use as wallpaper. (Clicking Add displays the Add Wallpaper
window; see “Browse/Save window” on page 98 for instructions on select-
ing a file using this window.) Then choose the style you want GNOME to
use to apply the wallpaper. For example, Zoom makes the picture you
chose fit the workspace.

You can also specify a color for the background: either solid or a gradient
between two colors. To use a color, you must first select No Wallpaper
from the Wallpaper frame: Allow the mouse pointer to hover over each of
the wallpapers displayed in the Wallpaper frame until you find one that
displays the tooltip No Wallpaper. Select that (non)wallpaper. Next, select
Solid color from the drop-down list labeled Colors and click the colored
box to the right of this list. GNOME displays the Pick a Color window.
Click a color you like from the ring and adjust the color by moving the lit-
tle circle within the triangle. Click OK when you are done. The color you
chose becomes the background color of the desktop. See page 268 for
more information on the Pick a Color window.

The Fonts tab (Figure 8-8, page 267) enables you to specify which fonts
you want GNOME to use in different places on the desktop. You can also
change how GNOME renders the fonts (page 267).

The Interface tab enables you to modify the appearance of window menus
and toolbars and presents a Preview pane that shows what your choices

will look like.

¢ The Visual Effects tab enables you to select one of three levels of visual
effects: None, Normal, and Extra. Normal and Extra effects replace the
Metacity window manager with Compiz Fusion (compiz.org), which
implements 3D desktop visual effects. (Compiz is the name of the core; the
plugins are called Compiz Fusion.) When you install Ubuntu, Ubuntu
determines what the hardware is capable of running and sets the proper
level of effects. One of the most dramatic visual effects is wiggly windows:
To see this effect, select Normal or Extra and drag a window around using
its titlebar. If you experience problems with the system, select None.

104 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

Customizing a
theme

Visual effects can cause problems

Setting Visual Effects to Normal or Extra can cause unexpected graphical artifacts, shorten battery
life, and reduce performance in 3D applications and video playback. If you are having problems with
an Ubuntu system, try setting Visual Effects to None and see if the problem goes away.

The changes you make in the Background, Fonts, Interface, and Visual Effects tabs
are used by any theme you select, including ones you customize. When you are
through making changes in the Appearance Preferences window tabs, you can click
Close to use the theme as you have modified it or return to the Theme tab to cus-
tomize the theme.

From the Theme tab of the Appearance Preferences window, select the theme you
want to customize or continue with the theme you modified in the preceding sec-
tion. Click Customize to open the Customize Theme window. Go through each tab
in this window; choose entries and watch the change each choice makes in the
workspace. Not all tabs work with all themes. When you are satisfied with the
result, click Close.

After you customize a theme, it is named Custom. When you customize another
theme, those changes overwrite the Custom theme. For this reason it is best to save
a customized theme by clicking Save As and specifying a name for the theme. After
saving a theme, it appears among the themes in the Theme tab.

SESSION MANAGEMENT

A session starts when you log in and ends when you log out or reset the session.
With fully GNOME-compliant applications, GNOME can manage sessions so the
desktop looks the same when you log in as it did when you saved a session or
logged out: The same windows will be positioned as they were on the same work-
spaces and programs will be as you left them.

To save a session, first make sure you have only the windows open that you want to
appear the next time you log in. Then select Main Menu: System=Preferences=
Sessions to display the Sessions window. Click the Session Options tab and then
click Remember currently running applications. The window displays Your session
has been saved. Each time you log in, the same windows will appear. If you want
GNOME to remember what you were doing each time you log off, put a tick in the
check box labeled Automatically remember running applications when logging out.

GETTING HELP

Ubuntu provides help in many forms. Clicking the question mark object on the Top
panel displays the Ubuntu Help Center window, which provides information on the
desktop. To display other information, click a topic in the list on the left side of this
window. You can also enter text to search for in the text box labeled Search and
press RETURN. In addition, most windows provide a Help object or menu. See “Where
to Find Documentation” on page 124 for more resources.

GETTING THE MOST oUT OF THE DESKToP 105

FEEL FREE TO EXPERIMENT

Try selecting different items from the Main menu and see what you discover. Fol-
lowing are some applications you may want to explore:

® OpenOffice.org’s Writer is a full-featured word processor that can import and
export MS Word documents. Select Main menu: Office= Open-Office.org
Writer. The Office menu also offers a database, presentation manager, and
spreadsheet.

e Firefox is a powerful, full-featured Web browser. Click the blue and
orange globe object on the Top panel to start Firefox. You can also select
Main menu: Applications=Internet=Firefox Web Browser.

e Pidgin is a graphical IM (instant messenger) client, formerly called Gaim,
that allows you to chat on the Internet with people who are using IM cli-
ents such as AOL, MSN, and Yahoo! To start Pidgin, select Main menu:
Applications=Internet= Pidgin Internet Messenger.

The first time you start Pidgin, it opens the Accounts window; click Add to
open the Add Account window. In the Add Account window, select a proto-
col (such as AIM or MSN), enter your screen name and password, and put a
tick in the check box labeled Remember password if you want Pidgin to
remember your password. Click Save. Visit pidgin.im for more information,
including Pidgin documentation and plugins that add features to Pidgin.

LOGGING OUT

To log out, click the Logout button (Figure 4-2, page 91) at the upper-right corner
of the workspace. GNOME displays the Logout window. This window looks differ-
ent from other windows because it has no decorations (page 141). Or, you can
select Main Menu: System= Quit and click Logout. You can also choose to shut
down or restart the system, among other options. From a textual environment,
press CONTROL-D or give the command exit in response to the shell prompt.

GETTING THE MOST OUT OF THE DESKTOP

The GNOME desktop is a powerful tool with many features. This section covers
many aspects of panels, the Main menu, windows, terminal emulation, and ways to
update, install, and remove software. Chapter 8 continues where this chapter leaves
off, discussing the X Window System, covering Nautilus in more detail, and
describing a few of the GNOME utilities.

GNOME DESKTOP TERMINOLOGY

The following terminology, from the GNOME Users Guide, establishes a founda-
tion for discussing the GNOME desktop. Figure 4-2 on page 91 shows the initial
Ubuntu GNOME desktop.

106 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

Desktop

Panels

Panel objects

Windows

Workspaces

Tooltips

The desktop comprises all aspects of the GNOME GUI. While you are working with
GNOME, you are working on the desktop. There is always exactly one desktop.

Panels are bars that appear on the desktop and hold (Panel) objects. Initially there
are two gray panels: one along the top of the screen (the Top Edge panel, or just Top
panel) and one along the bottom (the Bottom Edge panel, or just Bottom panel).
You can add and remove panels. You can place panels at the top, bottom, and both
sides of the desktop, and you can stack more than one panel at any of these loca-
tions. The desktop can have no panels, one panel, or several panels. See page 107
for more information on panels.

Panel objects appear as words or icons on panels. You can click these objects to dis-
play menus, run applets, or launch programs. The five types of panel objects are
applets, launchers, buttons, menus, and drawers. See page 109 for more informa-
tion on Panel objects.

A graphical application typically runs within and displays a window. At the top of
most windows is a titlebar that you can use to move, resize, and close the window.
The root window is the unoccupied area of the workspace and is frequently
obscured. The desktop can have no windows, one window, or many windows.
Most windows have decorations (page 141) but some, such as the Logout window,
do not.

Workspaces divide the desktop into one or more areas, with one such area filling
the screen at any given time. Initially there are two workspaces. Because panels and
objects on the desktop are features of the desktop, all workspaces display the same
panels and objects. By default, a window appears in a single workspace. The
Switcher (page 93) enables you to display any one of several workspaces.

Tooltips (Figure 4-2, page 91) is a minicontext help system that you activate by
moving the mouse pointer over a button, icon, window border, or applet (such as
those on a panel) and allowing it to hover there. When the mouse pointer hovers
over an object, GNOME displays a brief explanation of the object.

OPENING FILES

By default, you double-click an object to open it; or you can right-click the object
and select Open from the drop-down menu. When you open a file, GNOME figures
out the appropriate tool to use by determining the file’s MIME (page 1048) type.
GNOME associates each filename extension with a MIME type and each MIME
type with a program. Initially GNOME uses the filename extension to try to deter-
mine a file’s MIME type. If GNOME does not recognize the filename extension, it
examines the file’s magic number (page 1046).

For example, when you open a file with a filename extension of ps, GNOME calls
the Evince document viewer, which displays the PostScript file in a readable format.
When you open a text file, GNOME uses gedit to display and allow you to edit the

GETTING THE MOST ouUT OF THE DESkTorP 107

PANELS

Add to Panel

file. When you open a directory, GNOME displays its contents in a File Browser
window. When you open an executable file such as Firefox, GNOME runs the exe-
cutable. When GNOME uses the wrong tool to open a file, the tool generally issues
an error message. See “Open With” on page 118 for information on how to use a
tool other than the default tool to open a file.

As explained earlier, panels are the bars that initially appear at the top and bottom
of the desktop. They are part of the desktop and therefore are consistent across
workspaces.

THE PANEL MENU

Right-clicking an empty part of a panel displays the Panel (Context) menu. Aside
from help and informational selections, this menu has four selections.

Selecting Add to Panel displays the Add to Panel window (Figure 4-12). You can
drag an object from this window to a panel, giving you the choice of which
panel the object appears on. You can also highlight an object and click Add to
add the object to the panel whose menu you used to display this window. Many
objects in this window are whimsical: Try Geyes and select Bloodshot from its
preferences window, or try Fish. One of the more useful objects is Search for
Files. When you click this object on the panel, it displays the Search for Files
window (page 269).

m EEPEeT)
Select an item to add to the panel search: :]
& (you can also directly drag and drop items onto the panel): = '
[‘® Application Launcher...] [® Custom Application Launcher]
Accessories
& & LA
Address Book Clock Deskbar Dictionary Look up =
Search
&= @3 B9
Fish Geyes Invest Sticky Notes
7 EN
Tormboy Notes Weather Report
Desktop & Windows
0 Help gose

Figure 4-12 The Add to Panel window

108 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

Properties

i PanelBTo| p‘:!!l&-ﬂ—@
General | Background |

-

Orientation: | Top =
Size: |24 pixels
M Expand

[Autohide

] Show hide buttens

€ Help

Figure 4-13 The Panel Properties window, General tab

Selecting Properties displays the Panel Properties window (Figure 4-13). This win-
dow has two tabs: General and Background.

In the General tab, Orientation selects which side of the desktop the panel appears
on; Size adjusts the width of the panel. Expand causes the panel to span the width or
height of the workspace; without a tick in this check box the panel is centered and
just wide enough to hold its objects. Autohide causes the panel to disappear until
you bump the mouse pointer against the side of the workspace. Hide buttons work
differently from autohide: Show hide buttons displays buttons at each end of the
panel. When you click one of these buttons, the panel slides out of view, leaving only
a button remaining. When you click that button, the panel slides back into place.

The Background tab of the Panel Properties window enables you to specify a color
and transparency or an image for the panel.

If you want to see what stacked panels look like, use the Orientation drop-down
list to change the location of the panel you are working with. If you are working
with the Top panel, select Bottom and vice versa. As with Preferences windows,
Properties windows have no Apply and Cancel buttons; they implement changes
immediately. Use the same procedure to put the panel back where it was.

See “Pick a Color Window” on page 268 for instructions on how to change the
color of the panel. Once you have changed the color, move the slider labeled Style to
make the color of the panel more or less transparent. If you do not like the effect,
click the radio button labeled None (use system scheme) to return the panel to its
default appearance. Click Close.

GETTING THE MOST oUT OF THE DESkToP 109

Delete This Panel

New Panel

Applets

Window List applet

Launchers

E] [E Panel Properties HH Terminal HQ Untitledl - Openoffic...] |

Figure 4-14 Window List applets

Selecting Delete This Panel does what you might expect it. Be careful with this selec-
tion: When it removes a panel, it removes all the objects on the panel and you will
need to reconstruct the panel if you want it back as it was.

Selecting New Panel adds a new panel to the desktop. GNOME decides where it
goes; you can move the panel if you want it somewhere else.

MOVING A PANEL

You can drag any panel to any of the four sides of the desktop: Left-click any empty
space on a panel; the mouse pointer turns into a small hand. Drag the panel to the
side you want to move it to. Unlike dragging an object across a workspace, the
panel does not move until you have dragged the mouse pointer all the way to the
new location of the panel; it then snaps into place. If you have stacked panels and
are having trouble restacking them in the order you want, try dragging a panel first
to an empty side of the workspace and then to its final location.

PANEL OBJECTS

The icons and words on a panel, called panel objects, display menus, launch pro-
grams, and present information. The panel object with the blue and orange globe
starts Firefox. The email button (the open envelope icon) starts Evolution, an email
and calendaring application (www.gnome.org/projects/evolution). You can start
almost any utility or program on the system using a Panel object. This section
describes the different types of Panel objects.

An applet is a small program that displays its user interface on or adjacent to the
panel. You interact with the applet using its Applet Panel object. The Mixer (vol-
ume control), Clock (date and time; Figure 4-2, page 91), and Workspace Switcher
(Figure 4-2, page 91) are applets.

Although not a distinct type of object, the Window List applet is a unique and
important tool. One Window List applet (Figure 4-14) appears on the Bottom panel
for each open or iconified window on the displayed workspace. Left-clicking this
object minimizes its window or restores the window if it is minimized. Right-click
to display the Window Operations menu (page 112). If a window is berried under
other windows, click its Window List applet to make it visible.

When you open a launcher, it can execute a command, start an application, display
the contents of a folder or file, open a URI in a Web browser, and so on. In addition
to appearing on panels, launchers can appear on the desktop. The Firefox object is a
launcher: It starts the Firefox application. Under Main menu: Applications, you can
find launchers that start applications. Under Main menu: Places, the Home Folder,

www.gnome.org/projects/evolution

110 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

Buttons

Menus

Drawers

Documents, Desktop, and Computer objects are launchers that open File Browser
windows to display folders.

A button performs a single, simple action. The Logout button (Figure 4-2, page 91) dis-
plays a window that enables you to log off, shut down, or reboot the system. The Show
Desktop button at the left of the Bottom panel minimizes all windows on the workspace.

A menu displays a list of selections you can choose from. Some of the selections can
be submenus with more selections. All other selections are launchers. The next sec-
tion discusses the Main menu.

A drawer is an extension of a panel. You can put the same objects in a drawer that
you can put on a panel, including another drawer. When you click a Drawer object,
the drawer opens; you can then click an object in the drawer the same way you click
an object on a panel.

THE PANEL OBJECT CONTEXT MENUS

Three selections are unique to Panel Object Context menus (right-click a Panel
object). The Remove from Panel selection does just that. The Move selection
allows you to move the object within the panel and to other panels; you can also
move an object by dragging it with the middle mouse button. The Lock to Panel
selection locks the object in position so it cannot be moved. When you move an
object on a panel, it can move through other objects. If the other object is not
locked, it can displace the object if necessary. The Move selection is grayed out
when the object is locked.

THE MAIN MENU

Applications

Places

The Main menu appears at the left of the Top panel and includes Applications,
Places, and System. Click one of these words to display the corresponding menu.

The Applications menu holds several submenus, each named for a category of appli-
cations (e.g., Games, Graphics, Internet, Office). The last selection, Add/Remove, is
discussed on page 120. Selections from the submenus launch applications—peruse
these selections, hovering over those you are unsure of to display tooltips.

The Places menu holds a variety of launchers, most of which open a File Browser
window. The Home Folder, Documents, and Desktop objects display your directo-
ries with corresponding names. The Computer, CD/DVD Creator, and Network
objects display special locations. Each of these locations enables you to access file
manager functions. A special URI (page 1067) specifies each of these locations. For
example, the CD/DVD Creator selection displays the burn:///, URI which enables
you to create a CD or DVD. The Connect to Server selection opens a window that
allows you to connect to various type of servers, including SSH and FTP (see “File”
on page 263). Below these selections are mounted filesystems; click one of these to

GETTING THE MOST ouUT OF THE DESkToP 111

System

Copying launchers
to a panel

WINDOWS

=)= - Buttons

m|
u
a

1
=
I
C
<
v
u

-
File Edit View Go Bookmarks Help

@ . % _ % (A = =)
Back Forward Up Reload Home BrmpUter [Titlebar
Location: [fhome/sam &, 100%

[™——~Menubar

| Toolbar
bin Desktop

a @

duv oI

'\Vertical scrollbar

W2, Iog

I W— g Window contents

Istter ls.bz2 memo.txt myapp

dcvl\

Here N

—

A=y,

“—

il

(4]

3 itemns selected (1.2 KB)

Figure 4-15 A typical window

display the top-level directory of that filesystem. The Search for Files selection
enables you to search for files (page 269).

The System menu holds two submenus, selections that can provide support, and the
Quit selection. The two submenus are key to configuring your account and setting
up and maintaining the system.

The Preferences submenu establishes the characteristics of your account; each user
can establish her own preferences. Click some of these selections to become familiar
with the ways you can customize your account on an Ubuntu system.

The Administration submenu controls the way the system works. For example,
Administration=Folder Sharing enables Ubuntu to use NFS (Chapter 23) or Samba
(Chapter 24) to share folders with other systems. Administration=>Network config-
ures the system’s network connections (page 698). Most of these selections require
you to be a system administrator and enter your password to make changes. These
menu selections are discussed throughout this book.

You can copy any launcher from the Main menu to the Top panel or the desktop.
Instead of left-clicking the menu selection, right-click it. GNOME displays a small
menu that can add the launcher to the Top panel or desktop.

In a workspace, a window is a region that runs, or is controlled by, a particular pro-
gram (Figure 4-15). Because you can control the look and feel of windows—even
the buttons they display—your windows may not look like the ones shown in this
book. Each window in a workspace has a Window List applet (page 109) on the
Bottom panel.

112 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

Titlebar

Window Operations
menu

Toolbar

Operations
menu

Window
title

Figure 4-16 A window titlebar

A titlebar (Figures 4-15 and 4-16) appears at the top of most windows and con-
trols the window it is attached to. You can change the appearance and function of
a titlebar, but it will usually have at least the functionality of the buttons shown in
Figure 4-16.

The minimize (iconify) button collapses the window so that the only indication of
the window is its Window List applet on the Bottom panel; click this applet to
restore the window. Click the maximize button to expand the window so that it
occupies the whole workspace; click the same button on the titlebar of a maximized
window to restore the window to its former size. You can also double-click the title-
bar to maximize and restore a window. Clicking the maximize button with the mid-
dle mouse button expands the window vertically; using the left button expands it
horizontally. Use the same or a different mouse button to click the maximize button
again and see what happens. Clicking the close button closes the window and termi-
nates the program that is running in it. Left-click the titlebar and drag the window
to reposition it.

The Window Operations menu contains most common operations you need to per-
form on any window. Click the Window Operations menu button or right-click
either the titlebar or the Window List applet (page 109) to display this menu.

A toolbar (Figure 4-15) usually appears near the top of a window and contains
icons, text, applets, menus, and more. Many kinds of toolbars exist. The titlebar is
not a toolbar; rather, it is part of the window decorations placed there by the win-
dow manager (page 141).

CHANGING THE INPUT Focus (WINDOW CYCLING)

The window with the input focus is the one that receives keyboard characters and
commands you type. In addition to using the Window List applet (page 109), you
can change which window on the current workspace has the input focus by using
the keyboard; this process is called window cycling. When you press ALT-TAB,
GNOME displays in the center of the workspace a box that holds the titlebar
information from the windows in the workspace. It also shifts the input focus to
the window that was active just before the currently active window, making it easy
to switch back and forth between two windows. When you hold ALT and press 7A8
multiple times, the focus moves from window to window. Holding ALT and SHIFT and

GETTING THE MOST oUT OF THE DESkToP 113

Desktop menu

repeatedly pressing TAB cycles in the other direction. See page 139 for more infor-
mation on input focus.

CUTTING AND PASTING OBJECTS USING THE CLIPBOARD

There are two similar ways to cut/copy and paste objects and text on the desktop
and both within and between windows. First you can use the clipboard, technically
called the copy buffer, to copy or move objects or text: You explicitly copy an
object or text to the buffer and then paste it somewhere else. Applications that fol-
low the user interface guidelines use CONTROLX to cut, CONTROL-C to copy, and CONTROL-V to
paste. Application context menus frequently have these same selections.

You may be less familiar with the second method—using the selection or primary
buffer, which always contains the text you most recently selected (highlighted). You
cannot use this method to copy objects. Clicking the middle mouse button (click the
scroll wheel on a mouse that has one) pastes the contents of the selection buffer at
the location of the mouse pointer (if you are using a two-button mouse, click both
buttons at the same time to simulate clicking the middle button).

With both these techniques, start by highlighting the object or text to select it. You
can drag a box around multiple objects to select them or drag the mouse pointer
over text to select it. Double-click to select a word or triple-click to select a line.
Next, to use the clipboard, explicitly copy (CONTROL-C) or cut (CONTROLX) the objects or
text.! If you want to use the selection buffer, skip this step.

To paste the selected objects or text, position the mouse pointer where you want to
put it and then either press CONTROLV (clipboard method) or press the middle mouse
button (selection buffer method).

Using the clipboard, you can give as many commands as you like between the CONTROL-C
or CONTROL-X and CONTROL-, as long as you do not press CONTROL-C or CONTROLX again. Using
the selection buffer, you can give other commands after selecting text and before past-
ing it, as long as you do not select (highlight) other text.

USING THE RooT WINDOW

The root window is any part of a workspace that is not occupied by a window,
panel, or object. It is the part of the workspace where you can see the background.
To view the root window when it is obscured, click the Show Desktop button at the
left end of the Bottom panel to minimize the windows in the workspace.

Right-click the root window to display the Desktop menu, which enables you to
create a folder, launcher, or document. The Change Desktop Background selection
opens the Appearance Preferences window (page 102) to the Background tab.

1. These control characters do not work in a terminal emulator window because the shell running in the
window intercepts them before the terminal emulator can receive them. You must either use the selection
buffer in this environment or use copy/paste from the Edit selection on the menubar or from the context
menu (right-click).

114 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

The shell

R SaraPIuTT- C=|EahxT
Fle Edt Wiew Terminal Tabs Help
sam@plum:~§ df -h

D

Filesystem Size Used Avail Use% Mounted on
/dev/hdal 746 7.4G6 636G 11% /

varrun 506M 240K 506M 1% /var/run

varlock 506M 6 586M 8% /var/lock

udev 506M 48K 588M 1% /dev

devshm 506M 0 586M 8% /dev/shm

dog:/pB4 326 156 16G 49% /po4

tmpfs 506M 34M 472M 7% /lib/modules/2.6.2

2-12-generic/volatile
sam@plum:~$ I

Figure 4-17 A Terminal terminal emulator window

RUNNING COMMANDS FROM A TERMINAL EMULATOR/SHELL

A terminal emulator is a window that presents a command line interface (CLI); it
functions as a textual (character-based) terminal and is displayed in a graphical
environment.

To display the GNOME terminal emulator named Terminal (Figure 4-17), select
Main menu: Applications= Accessories= Terminal or enter the command gnome-
terminal from a Run Application window (ALT-R2). Because you are already logged in
and are creating a subshell in a desktop environment, you do not need to log in
again. Once you have opened a terminal emulator window, try giving the command
man man to read about the man utility (page 124), which displays Linux manual
pages. Chapter 5 describes utilities that you can run from a terminal emulator.

You can run character-based programs that would normally run on a terminal or
from the console in a terminal emulator window. You can also start graphical
programs, such as xeyes, from this window. A graphical program opens its own
window.

When you are typing in a terminal emulator window, several characters, including

%, 2,1, [, and], have special meanings. Avoid using these characters until you have
read “Special Characters” on page 146.

Once you open a terminal emulator window, you are communicating with the com-
mand interpreter called the shell. The shell plays an important part in much of your
communication with Linux. When you enter a command at the keyboard in
response to the shell prompt on the screen, the shell interprets the command and
initiates the appropriate action—for example, executing a program; calling a com-
piler, a Linux utility, or another standard program; or displaying an error message
indicating that you entered a command incorrectly. When you are working on a
GUI, you bypass the shell and execute a program by clicking an object or name.
Refer to Chapter 7 for more information on the shell.

GETTING THE MOST oUT OF THE DESKTOP 115

[Open with "OpenOffice.org Cale" || £ Open with "Text Editor"
Open with "Archive Manager" Open with Other Application...
Open with Other Application... .
@ Cut
e Cut & copy
5 copy
Make Link
Make Link Bename...
Bename...

i Move to Trash

i Moye to Trash
Stretch lcon

Stretch Icon

sendto...
Sendto... [create Archive...

[Extract Here
|3 Properties

i Properties

Figure 4-18 The Object Context menus for a spreadsheet (left) and a text file (right)

THE OBJECT CONTEXT MENU

When you right-click an object or group of objects either on the desktop or in a File
Browser window, GNOME displays an Object Context menu. Different types of
objects display different context menus, but most context menus share common selec-
tions. Figure 4-18 shows context menus for a OpenOffice.org spreadsheet file and for
a plain text file. Table 4-1 lists some common Object Context menu selections.

Common Object Context menu selections

Open

Open in New
Window

Open with "App"

Open with »

Browse Folder

Runs an executable file. Opens a file with an appropriate application. Opens a
folder in a File Browser window. Same as double-clicking the object.

(From a File Browser window only.) Opens a folder in a new File Browser win-
dow instead of replacing the contents of the current window. Same as holding
SHIFT while double-clicking a folder in a Browser window.

Opens the file using the application named App. When this selection appears
as the first selection in the menu, App is the default application that GNOME
uses to open this type of file. See page 118 for information on changing this
default.

A triangle appearing to the right of a selection indicates the selection is a
menu. Allow the mouse pointer to hover over the selection to display the sub-
menu. Each submenu selection is an Open with "App" selection (above). The
last selection in the submenu is Open with Other Application (below).

(On the desktop only.) Opens a folder in a File Browser window. Same as double-
clicking a folder on the desktop.

116 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

Basic

Common Object Context menu selections (continued)

Open with Other Displays the Open With menu. This menu allows you to select an application

Application to open this type of file; the next time you use the Object Context menu to open
this type of file, the application you selected appears as an Open with "App’
selection (above). Does not change the default application for this type of file.
See page 118 for information on changing the default application.

Cut Removes the object and places it on the clipboard (page 113).
Copy Copies the object to the clipboard (page 113).
Extract Here Extracts the contents of an archive and some other types of files, such as some

documents, to a directory with the same name as the original file plus _FILES.

Make Link Creates a link to the object in the same directory as the object. You can then
move the link to different directory where it may be more useful.

Move to Trash Moves the object to the trash (page 100).
Send to Opens a Send To window that allows you to email the object.

Create Archive Opens the Create Archive window which allows you to specify a format and a
name for an archive of one or more objects (page 264).

Share folder Opens the Share Folder window, which allows you to share a folder using NFS
(Chapter 23) or Samba (Chapter 24), depending on which is installed on the
local system. Select Main Menu: System=>Administration=>Shared Folders
to display the Shared Folders window, which lists folders that are shared from
the local system. Requires root privileges.

Properties Displays the Object Properties window.

THE OBJECT PROPERTIES WINDOW

The Object Properties window displays information about a file, such as who owns
it, permissions, size, location, MIME type, ways to work with it, and so on. This
window is titled filename Properties, where filename is the name of the file you
clicked to open the window. Display this window by right-clicking an object and
selecting Properties from the drop-down menu. The Properties window initially dis-
plays some basic information. Click the tabs at the top of the window to display
additional information. Different types of files display different sets of tabs. You
can modify the settings in this window only if you have permission to do so. This
section describes the five tabs common to most Object Properties windows.

The Basic tab displays information about the file, including its MIME type, and
enables you to select a custom icon for the file and change its name. Change the
name of the file in the text box labeled Name. If the filename is not listed in a text
box, you do not have permission to change it. An easy way to change the icon is to

GETTING THE MOST oUT OF THE DESkToP 117

Emblems

Permissions

A A e e i A A e =)

Basic| Fmblams | permissions | Open with | Motes Basic | Emblerns | Permissions Open with | Motes

owner: mark - Mark G Scbell

)) &) Access: |Read and wiite
specal certified
Group: | mark
J -1 J 2
- LV Access: | Fead-only
urgent evs-conflict
Others
</ 1 Access: | Read-cnly
multimedia plan
Exacute: Allow gracuting fila a5 program

SELInux Context:

Last changed:

@ elp Ed close @ Lelp Ed close

Figure 4-19 The Object Properties window: Emblems tab (left);
Permissions tab (right)

open a File Browser window at /usr/share/icons. Work your way down through the
directories until you find an icon you like, and then drag and drop it on the icon to
the left of Name in the Basic tab of the Object Properties window. This technique
does not work for files that are links (indicated by the arrow emblem at the upper
right of the object).

The Emblems tab (Figure 4-19, left) allows you to add and remove emblems associ-
ated with the file by placing (removing) a tick in the check box next to an emblem.
Figure 4-15 on page 111 shows some emblems on file objects. Nautilus displays
emblems in both its Icon and List views, although there may not be room for more
than one emblem in the List view. Emblems are displayed on the desktop as well.
You can also place an emblem on an object by dragging the emblem from the Side
pane/Emblems and dropping it on an object in the View pane (page 261) of a File
Browser window. Drag the Erase emblem to an object to remove most emblems
from the object.

The Permissions tab (Figure 4-19, right) allows the owner of a file to change the file’s
permissions (page 199) and to change the group (see /etc/group on page 558) that
the file is associated with to any group the owner is associated with. When running
with root privileges, you can also change the owner of the file. The command
gksudo nautilus opens a File Browser window running with root privileges (but read
the caution on page 88). Nautilus grays out items you are not allowed to change.

Using the drop-down lists, you can give the owner (called user elsewhere; see the tip
about chmod on page 201), group, and others read or read and write permission for
a file. You can prohibit the group and others from accessing the file by specifying
permissions as None. Put a tick in the check box labeled Execute to give all users
permission to execute the file. This tab does not give you as fine-grained control
over assigning permissions as chmod (page 200) does.

118 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

Open With

Notes

- 4.02.png Properties =

Basic Emblems Permissions Open With Notes Image Document =
¥ . Open with "Image Viewer"

Ll Mame: 4.02.png Open with "Firafox Web Browser” Open With "
Open with “F-Spot Photo Viewer"
Type: PNG image Open with "GIMP Image Editor” S
Size: 68.8 KB (70413 bytes) Open with "gThumb Image Viewer™ =P
Locatiore /heme/ubuntuDesktop Malke Link

MIME type: Image/png Open with Other Application... R

Modified: Fri 16 Nov 2007 01:45:57 AM UTC e ot

Accessed: Fri 16 Nov 2007 01:45:568 AM UTC Strgtch Icon

Create Archive..,
Send to...

& Properties

@Help Edglose

Figure 4-20 The Object Properties window, Open With tab, and the
Object Context menu, Open With submenu for the same file

Permissions for a directory work as explained on page 202. Owner, group, and
others can be allowed to list files in a directory, access (read and—with the
proper permissions—execute) files, or create and delete files. Group and others
permissions can be set to None. The tri-state check box labeled Execute does not
apply to the directory; it applies to the files in the directory. A tick in this check
box gives everyone execute access to these files; a hyphen does not change exe-
cute permissions of the files; and an empty check box removes execute access for
everyone from these files.

When you ask GNOME to open a file that is not executable (by double-clicking its
icon or right-clicking and selecting the first Open with selection), GNOME deter-
mines which application or utility it will use to open the file. GNOME uses several
techniques to determine the MIME (page 1048) type of a file and selects the default
application based on that determination.

The Open With tab (Figure 4-20) enables you to change which applications
GNOME can use to open the file and other files of the same MIME type (typically
files with the same filename extension). Click the Add button to add to the list of
applications. Highlight an application and click Remove to remove an application
from the list. You cannot remove the default application.

When you add an application, GNOME adds that application to the Open With
list, but does not change the default application it uses to open that type of file.
Click the radio button next to an application to cause that application to become
the default application that GNOME uses to open this type of file.

When a file has fewer than four applications in the Open With tab, the Object Con-
text menu displays all applications in that menu. With four or more applications,
the Object Context menu uses an Open With submenu (Figure 4-20).

The Notes tab provides a place to keep notes about the file.

UPDATING, INSTALLING, AND REMOVING SOFTWARE PACKAGES 119

UPDATING, INSTALLING, AND REMOVING
SOFTWARE PACKAGES

Ubuntu software comes in packages that include all necessary files, instructions
so that a program can automatically install and remove the software, and a list
of other packages that the package depends on. There are many ways to search
for and install software packages. The Update Notifier (page 100) prompts you
each time updates are available for software on the system. The Software
Sources window (discussed next) is an easy way to install popular software.
Synaptic (page 121) is more complex and gives you a wider selection of soft-
ware. Chapter 14 explains how to work with software packages from the com-
mand line.

SOFTWARE SOURCES WINDOW

Repositories

Ubuntu Software

Repositories hold collections of software packages and related information. The
Software Sources window controls which categories of packages Ubuntu
installs, which repositories it downloads the packages from, how automatic
updating works, and more. Open this window by selecting Main menu: System=
Administration= Software Sources (you will need to supply your password) or by
giving the command gksudo software-properties-gtk from a terminal emulator or
Run Application window (ALT-R2). The Software Source window has five tabs,
which are discussed next.

The Ubuntu Software tab controls which categories of packages (page 588) APT
(page 588) and Synaptic install and the Update Manager updates automatically.
Typically all categories have ticks in their check boxes except for Source code.
Put a tick in this check box if you want to download source code. If the drop-
down list labeled Download from does not specify a server near you, use the list
to specify one.

If the system does not have an Internet connection, put a tick in one of the check
boxes in the drop-down list labeled Installable from CD-ROM/DVD; APT will
then install software from that source. If you do have an Internet connection,
remove the tick from that check box. You can specify a new CD/DVD in the Third-
Party Software tab.

Add only repositories you know to be trustworthy

Adding software from other than the Ubuntu repositories can cause the system to not work prop-
erly and cause updates to fail. Even worse, it can make the system vulnerable to attack. Do not
add a third-party repository unless you trust it implicitly.

120 CHAPTER4 INTRODUCTION TO UBUNTU LINUX

& SOTWaTE S0t Cre) ==0E=]

Ubuntu Software | Third-Party Software |~Updates |Authenticat\on l Statistics

Ubuntu updates
[Important security updates (gutsy-security)

M Recommended updates (gutsy-updates)
[] Pre-released updates (gutsy-proposed)

[] Unsupported updates (gutsy-backports)

Automatic updates

[Check for updates: | Daily >

() Install security updates without confirmation
() Download all updates in the background

@ Only notify about available updates

Figure 4-21 The Software Sources window, Updates tab

Third-Party You can add, edit, and remove repositories from the Third-Party Software tab. (See
Software the adjacent security box concerning adding repositories.) Unless you are working
with software that is not distributed by Ubuntu, you do not need to add any reposi-

tories. To add a CD/DVD as a repository, click Add CD-ROM.

Updates The top part of the Updates tab (Figure 4-21) specifies which types of updates you
want the Update Manager to download. Typically you will want to download
important security updates and recommended updates. In the bottom part of this
tab you can specify if and how often the Update Manager will check for updates
and what to do when it finds updates.

Authentication The Authentication tab holds keys for trusted software providers. Ubuntu uses keys
to authenticate software, which protects the system against malicious software.
Typically Ubuntu provides these keys automatically.

Statistics The Statistics tab allows you to participate in a software popularity contest.

ADD/REMOVE APPLICATIONS

The Add/Remove Applications window (Figure 4-22) adds and removes applica-
tions from the system. It is simpler and has fewer selections than Synaptic
(described next). Open this window by selecting Main menu: Applications=
Add/Remove or by giving the command gnome-app-install from a terminal emula-
tor or Run Application window (ALT-2). Maximizing this window may make it easier
to use.

UPDATING, INSTALLING, AND REMOVING SOFTWARE PACKAGES 121

optional

SYNAPTIC:

) Add/Remove Applications: E@
Search: ‘ ‘9| Show: [Supported applications =
-ﬁ:} All Application ~ Popularity
1Y, Accessories Abiword Word Processar
‘.i? u f AbiWord Word Processor K ok ok
J,J‘aj Education

= O 4 AdBlock extension for Firefoxjlceweasel

<l Games T The AdBlock extension adds to Frefoxicewe...

V) Adept Manager
= Graphics o Manage installed and available software ek ke ke
W Internet iom i Fir =i
- AisleRiot Solitaire

- @ I * & % ok Kk
[l Office Play many different selitaire games

= Akrenatar %

&5 other ’]

¢ programming ¥ AbiWord Word Processor
m Sound & Video WYSIWYG word processor based on GTK2/GNOME2 8¢

Abiword is the first application of a complete, open source office
oo System Tools suite. The upstream source includes cross-platform support for
@ Midheree] Ameees Win32, Be0s, and QNX as well as GTK+ on Unix.
This package contains the Abiword binary built with GTK2/GNOME2.

Canonical Ltd. provides technical support and security updates for
Abiword Word Processor

Abiword Word Processor integrates well into the Ubuntu desktop

Figure 4-22 The Add/Remove Applications window

Enter the name or part of the name of an application in the text box labeled Search
at the top of the window and press RETURN to search for an application. Unless you
want to limit selections, select All available applications in the drop-down list
labeled Show. You can select a category of applications from the list at the left of
the window.

Scroll through the applications displayed at the right of the window. When you
click/highlight an application, the window displays a summary of the application in
the frame at the lower-right corner of the window. Put a tick in the check box next
to each application you want to install. Remove tick marks from applications you
want to remove. Click Apply Changes to implement the changes you have marked.
This utility summarizes the changes you have requested and asks if you want to
apply them. Click Apply. Because you need to work with root privileges to install
and remove software, the utility may ask for your password. When it is finished it
tells you it has been successful. Click Close. Packages you installed should be avail-
able on the Main menu.

FINDS, INSTALLS, AND REMOVES SOFTWARE

This section describes how to use Synaptic to find, download, install, and remove
software packages. Open the Synaptic Package Manager window by selecting

122 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

¥ sSynapticEackage Manager ===
Ele Edit Package Settings Help
5) &
Reload Mark All Upgrades Properties Search
All s Package Installed Viersion Latest Versiq| |
email O3 exima-daemon-heavy 4675 _— Category list box

exim4 [1 3 exima-daemon-heavy-d
~eximé-daemon-light 4.67-5 Ll —Handle

[4% exim4-daemon-light-dbg 677
15 exima-dbg 4.67-5 =l —Sections button
I [v]
v weight Exim MFA{VI) daemon @

%I (v4) is & mail transport agent. This package contains the exim4

daemon with only basic features enabled. It works well with the
standard setups that are provided by Debian and includes support for B
m TLS encryption and the dlopen patch to allow dynamic leading of a

local_scan function.
The Debian exim4 packages have their own web page,

PP SO Y R B 1 P S S T S

12 packages listed, 1283 installed, 0 broken. 0 to installfupgrade, 0 to remove

(4]

Figure 4-23 The Synaptic Package Manager window

System: Administration= Synaptic Package Manager from the Main menu or by
giving the command gksudo synaptic from a terminal emulator or Run Applica-
tion window (ALT-R2). Figure 4-23 shows the initial window. The first time you run
Synaptic, it reminds you to reload package information regularly. You can do so
by clicking Reload on the toolbar.

The Synaptic Package Manager window displays a lot of information. Maximizing
this window and widening the left column (by dragging the handle) may make it
easier to use. When the Sections button is highlighted in the left column, the top of
the left column holds a list box containing categories of software. Initially All is
selected in this list box, causing the window to display all software packages in the
list box at the top of the right column.

You can shorten the list of packages in the list box by selecting a category in the cate-
gory list box or by searching for a package. To search for a package, display the Find
window by clicking Search on the toolbar. Enter the name or part of the name of the
package you are looking for. For example, to display all packages related to exim4,
enter exim4 in the text box labeled Search and select Description and Name from the

W Flaiel €3]

Search: [exim4 | 'l

Look in: [Description and Name | %

[E;-‘gearch J

l ogancel

Figure 4-24 The Find window

UPDATING, INSTALLING, AND REMOVING SOFTWARE PACKAGES 123

Ny Synaptic Package Manager F=2|0=0|E=
File Edit Package Settings Help
» | B
Reload Mark All Upgrades Properties Search
All s Package Installed Version Latest Version Desel
chess — .
O crafty-bocks-medtosmall 1.0-2.1 Medil
i =
emal () crafty-books-small 1.0-2.1 smal
exim4
(| dreamchess 0.1.0-1 a 3D
| 0.1.0-1 a3p|| |
= Mark for Installation R -]
[D
v @
| Sections C graphics and provides various chess board sets,
ré b
| Status
| origin A moderately strong chess engine is included: Dreamer, However, should this
engine be too weak for you, then you can use any other XBoard-compatible chess
| Custom Filters engine, including the popular Crafty and GNU Chess.
| Search Results | —
—Atharfanturas inchida an eeraan mame licke eina S AR naatian nde =
53 packages listed, 1283 installed, 0 broken. 0 to installjupgrade, 0 to remowve

Figure 4-25 The Synaptic Package Manager window displaying chess programs

drop-down list labeled Look in (Figure 4-24). Click Search. The Synaptic Package
Manager window displays the list of packages meeting the search criteria specified in
the list box at the top of the right column. When you click a package name in this list,
Synaptic displays a description of the package in the frame below the list.

The following example explains how to use Synaptic to locate, download, and
install a chess program. With the Synaptic Package Manager window open, search
for chess. Synaptic displays a list of chess-related packages in the righthand list
box. Click several packages, one at a time, reading the descriptions in the frame at
the lower right of the window. Assume you decide to install Dream Chess (the
dreamchess package, www.dreamchess.org). When you click the check box to the
left of dreamchess, Synaptic displays a list of options. Because this package is not
installed, all selections except Mark for Installation are grayed out (Figure 4-25).
Click this selection. Because the dreamchess package is dependent on other pack-
ages that are not installed, Synaptic displays a window asking if you want to mark
additional required changes (Figure 4-26 on the next page). This window lists
additional packages Synaptic needs to install so that Dream Chess will run. Click
Mark to mark the additional packages. All packages marked for installation are
highlighted in green.

To apply the changes you have marked, click Apply on the toolbar. Synaptic dis-
plays a Summary window. If you were installing and/or removing several packages,
this summary would be longer. Click Apply. Synaptic keeps you informed of its
progress. When it is done, it displays the Changes Applied window. Click Close and
then close the Synaptic Package Manager window. Now Dream Chess appears on
the Main menu: Applications=Games menu.

www.dreamchess.org

124 CHAPTER4 INTRODUCTION TO UBUNTU LINUX

i =

Mark additional required changes?

2] The chosen action also affects other packages.
The following changes are required in order to
proceed.
< To be installed

dreamchess-data
librmxrml1

libsdl-imagel.2

l ogancel

=

Figure 4-26 Mark additional required changes screen

WHERE TO FIND DOCUMENTATION

Distributions of Linux, including Ubuntu, typically do not come with hardcopy reference
manuals. However, its online documentation has always been one of Linux’s strengths.
The man (or manual) and info pages have been available via the man and info utilities
since early releases of the operating system. Ubuntu provides a graphical help center. Not
surprisingly, with the growth of Linux and the Internet, the sources of documentation
have expanded as well. This section discusses some of the places you can look for infor-
mation on Linux in general and Ubuntu Linux in particular. See also Appendix B.

UBUNTU HELP CENTER

To display the Ubuntu Help Center window (Figure 4-27), click the blue object with
a question mark in it on the Top panel or select Main menu: System=Help and Sup-
port. Click topics in this window until you find the information you are looking for.
You can also search for a topic using the text box labeled Search.

man: DISPLAYS THE SYSTEM MANUAL

In addition to the Graphical Ubuntu Help Center, the textual man utility displays
(man) pages from the system documentation. This documentation is helpful when
you know which utility you want to use but have forgotten exactly how to use it.
You can also refer to the man pages to get more information about specific topics or
to determine which features are available with Linux. Because the descriptions in
the system documentation are often terse, they are most helpful if you already
understand the basic functions of a utility.

Because man is a character-based utility, you need to open a terminal emulator win-
dow (page 114) to run it. You can also log in on a virtual terminal (page 136) and
run man from there.

WHERE TO FIND DOCUMENTATION 125

less (pager)

Fle Edit Go Bookmarks Help
Help Topics

[Ubuntu Help Center]

[v]

Topics

p Welcome to the Ubuntu Help
Adding and Removing Center
Software To find help, insert a keyword in the search bar

Advanced Topics Common Questions

Keeping Your

+ Connecting to the internet
Computer Safe « Enabling desktop effects
- « Playing music
Customising Your « Importing photos|
Desktop + Keeping your computer updated
Music, Videos and Can't find the answer?
Photos
The Ubuntu community provides extensive
Internet free support
Files, Faldersand o e mertal rechrica
Documents support

New to Ubuntu? How to Contribute

Printing, Faxing and Ubuntu has an open and vibrant community of
Scanning contributors. Find out how to contribute

[«

Figure 4-27 The Ubuntu Help Center window

To find out more about a utility, give the command man, followed by the name of
the utility. Figure 4-28 shows man displaying information about itself; the user
entered a man man command.

The man utility automatically sends its output through a pager—usually less
(page 148), which displays one screen at a time. When you access a manual page in
this manner, less displays a prompt [e.g., Manual page man(1) line 1] at the bottom
of the screen after it displays each screen of text and waits for you to request

File Edit View Terminal Tabs Help

MAN(1) Manual pager utils MAN(1)
NAME
man - an interface to the on-line reference manuals
SYNOPSIS
man [-c|-w|-tZ] [-H[browser]] [-T[device]] [-X[dpi]] [-adhu7V]
[-1]-I] [-m system[,...]] [-L locale] [-p string] [-C file] [-M
path] [-P pager] [-r prompt] [-S list] [-e extension] [[section]
page ...] ...
man -1 [-7] [-tZ] [-H[browser]] [-T[device]] [-X[dpi]]l I[-p
string] [-P pager] [-r prompt] file ...

man -k [apropos options] regexp ...
man -f [whatis options] page ...

DESCRIPTION
man 1is the system's manual pager. Each page argument given to
man is normally the name of a program, utility or function. The
manual page associated with each of these arguments is then
found and displayed. A section, if provided, will direct man to
look only in that section of the manual. The default action is
to search in all of the available sections, following a pre-
defined order and to show only the first page found, even if

Manual page man(l) line 1

Figure 4-28 The man utility displaying information about itself

126 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

another screen of text by pressing the SPACE bar. Pressing h (help) displays a list of
less commands. Pressing q (quit) stops less and causes the shell to display a prompt.
You can search for topics covered by man pages using the apropos utility (page 165).

Based on the FHS (Filesystem Hierarchy Standard, page 194), the Linux system
manual and the man pages are divided into ten sections, where each section
describes related tools:

. User Commands

. System Calls

. Subroutines

. Devices

. File Formats

. Games

. Miscellaneous

. System Administration
. Kernel

10. New

O OO\ b W

This layout closely mimics the way the set of UNIX manuals has always been
divided. Unless you specify a manual section, man displays the earliest occurrence in
the manual of the word you specify on the command line. Most users find the infor-
mation they need in sections 1, 6, and 7; programmers and system administrators
frequently need to consult the other sections.

In some cases the manual contains entries for different tools with the same name.
For example, the following command displays the man page for the passwd utility
from section 1 of the system manual:

$ man passwd
To see the man page for the passwd file from section 5, enter
$ man 5 passwd

The preceding command instructs man to look only in section 5 for the man page. In
documentation you may see this man page referred to as passwd(5). Use the —a
option (see the adjacent tip) to view all man pages for a given subject (press qRETURN
to display the next man page). For example, give the command man -a passwd to
view all man pages for passwd.

Options

An option modifies the way a utility or command works. Options are usually specified as one or
more letters that are preceded by one or two hyphens. An option typically appears following the
name of the utility you are calling and a SPACE. Other arguments (page 1023) to the command fol-
low the option and a SPAGE. For more information refer to “Options” on page 221.

info: DISPLAYS INFORMATION ABOUT UTILITIES

The textual info utility is a menu-based hypertext system developed by the GNU
project (page 2) and distributed with Ubuntu Linux. The info utility includes a

WHERE TO FIND DOCUMENTATION 127

Jermins| SliEE|
Fle Edit View Terminal Tabs Help
Eile: coreutils.info, MNode: Top, Next: Introduction, Up: (dir)

GNU Coreutils

ook ok o ok ok ok K kR

This manual documents version 5.97 of the GNU core utilities, including
the standard programs for text and file manipulation.

Copyright (C) 1994, 1995, 1996, 2000, 2001, 2002, 2003, 2004, 2805
Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, with no Front-Cover Texts,
and with no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

* Menu:

*

Introduction:: Caveats, overview, and authors.
Common options:: Common options.

*

Figure 4-29 'The screen info coreutils displays

tutorial on itself (go to www.gnu.org/software/texinfo/manual/info) and documen-
tation on many Linux shells, utilities, and programs developed by the GNU
project. Figure 4-29 shows the screen that info displays when you give the com-
mand info coreutils (the coreutils software package holds the Linux core utilities).

man and info display different information

The info utility displays more complete and up-to-date information on GNU utilities than does
man. When a man page displays abbreviated information on a utility that is covered by info, the
man page refers to info. The man utility frequently displays the only information available on
non-GNU utilities. When info displays information on non-GNU utilities, it is frequently a copy of
the man page.

Because the information on this screen is drawn from an editable file, your display
may differ from the screens shown in this section. When you see the initial info
screen, you can press any of the following keys or key combinations:

¢ h to go through an interactive tutorial on info
e ? to list info commands
e SPACE to scroll through the menu of items for which information is available

¢ m followed by the name of the menu you want to display or a SPACE to dis-
play a list of menus

* q or CONTROLC to quit

The notation info uses to describe keyboard keys may not be familiar to you. The
notation C-h is the same as CONTROL-H. Similarly M-x means hold down the META or ALT
key and press x. (On some systems you need to press ESCAPE and then x to duplicate
the function of METAx.)

www.gnu.org/software/texinfo/manual/info

128 CHAPTER4 INTRODUCTION TO UBUNTU LINUX

JETminE) SliEiEs)
Fle Edit View Terminal Tabs Help

* nohup invocation:: Run a command immune to hangups

* su invocation:: Run a command with substitute user and\
group ID

Process control

* kill invocation:: Sending a signal to processes.
Delaying
* sleep invocation:: Delay for a specified time

Numeric operations

* factor invocation:: Print prime factors
* seq invocation:: Print numeric sequences

File permissions
* Mode Structure:: Structure of File Permissions

* Symbolic Modes:: Mnemonic permissions representation
* Numeric Modes:: Permissions as octal numbers

: (coreutils.info.gz)Top, 331 lines --84%

Figure 4-30 The screen info displays after you type /sleepRETURN

You may find pinfo easier to use than info

The pinfo utility is similar to info but is more intuitive if you are not familiar with the emacs editor.
This utility runs in a textual environment, as does info. When it is available, pinfo uses color to make
its interface easier to use. Use Synaptic to install the pinfo package if you want to experiment with it.
Run pinfo from a terminal emulator or Run Application window (ALT-F2) and select Run in terminal).

After giving the command info, press the SPACE bar a few times to scroll through the
display. Figure 4-30 shows the entry for sleep. The asterisk at the left end of the line
indicates that this entry is a menu item. Following the asterisk is the name of the
menu item and a description of the item.

Each menu item is a link to the info page that describes the item. To jump to that
page, use the ARROW keys to move the cursor to the line containing the menu item and
press RETURN. Alternatively, you can type the name of the menu item in a menu com-
mand to view the information. To display information on sleep, for example, you
can give the command m sleep, followed by RETURN. When you type m (for menu),
the cursor moves to the bottom line of the window and displays Menu item:. Typing
sleep displays sleep on that line, and pressing RETURN displays information about the
menu item you have chosen.

Figure 4-31 shows the top node of information on sleep. A node groups a set of
information you can scroll through with the spacte bar. To display the next node,
press n. Press p to display the previous node.

As you read through this book and learn about new utilities, you can use man or info to
find out more about those utilities. If you can print PostScript documents, you can print
a manual page with the man utility using the —t option (for example, man -t cat | Ipr
prints information about the cat utility). You can also use a Web browser to display the
documentation at www.tldp.org, help.ubuntu.com, help.ubuntu.com/community, or
answers.launchpad.net/ubuntu and print the desired information from the browser.

www.tldp.org

WHERE TO FIND DOCUMENTATION 129

TEFET e
Fle Edit View Terminal Tabs Help
Eile: coreutils.info, MNode: sleep invocation, Up: Delaying

24.1 “sleep': Delay for a specified time

‘sleep' pauses for an amount of time specified by the sum of the values
of the command line arguments. Synopsis

sleep NUMBER[smhd]...

Each argument is a number followed by an optional unit; the default
is seconds. The units are:

-
seconds

minutes

hours

Info: (coreutils.info.gz)sleep invocation, 35 lines --Top

Figure 4-31 The info page on the sleep utility

THE ——help OPTION

Another tool you can use in a textual environment is the ——help option. Most GNU
utilities provide a —-help option that displays information about the utility. Non-
GNU utilities may use a —h or -help option to display help information.

$ cat --help
Usage: cat [OPTION] [FILE]...
Concatenate FILE(s), or standard input, to standard output.

-A, --show-all equivalent to -VvET

-b, --number-nonbTlank number nonblank output lines
-e equivalent to -vE

-E, --show-ends display $ at end of each line

If the information that ——help displays runs off the screen, send the output through
the less pager (page 125) using a pipe (page 156):

$ 1s --help | less

HOWTOsS: FINDING OUT HOw THINGS WORK

A HOWTO document explains in detail how to do something related to
Linux—from setting up a specialized piece of hardware to performing a system
administration task to setting up specific networking software. Mini-HOWTOs
offer shorter explanations. As with Linux software, one person or a few people gen-
erally are responsible for writing and maintaining a HOWTO document, but many
people may contribute to it.

The Linux Documentation Project (LDP, page 131) site houses most HOWTO and
mini-HOWTO documents. Use a Web browser to visit www.tldp.org, click HOWTOs,

www.tldp.org

130 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

) TGELD FHE 5 [BIEs! EEE
Ele Edit wiew History Bookmarks Iools Help
s e ey .
<_1 - - @ i hitp:fwww.google comjsearch? | » | b | |[G]-
Web |mages Video News Maps Gmaill morew Sign in [

GO L)g[e |"getpeemams failed: Error was Transport endpoi Search %
New! View and manage your web history
Web Results 1 - 10 of about 606 for "getpeername failed: Error was Transport endpoir

Samab errors (getpeername failed. Error was Transport endpoint is ... [
Title: Samab errors (getpeername failed. Error was Transport endpoint is not
connected) (write_socket_data: write failure. Error = Connection reset by peer) ...
www.experts-exchange.com/Networking/Linux_Networking/Q_21356324.html - 74k -

Sambal getpeername failed, Error was Transport endpoint is not ...
[Samba] getpeername failed, Error was Transport endpoint is not

connected. H.meijerink h.meijerink at starinkbv.nl Thu Jul 7 03:39:19 GMT 2005 ...
lists.samba.org/archive/samba/2005-July/107963.html - Sk - Cached - Similar pages

getpeername failed. Error was Transport endpoint is not
connected

(Broken pipe) [2001/12/11 12:47:45, 0] libjutil_sock.c:get_socket_addr{1031)
getpeername failed. Error was Transport endpoeint is not connected
[2001/12/11 ...

lists samba.org/archive/samba/2001-December/033505.htrl - Sk -

. ed - Similar page

sults from lists.samba.org] =

[[

Figure 4-32 Google reporting on an error message

and pick the index you want to use to find a HOWTO or mini-HOWTO. You can also
use the LDP search feature on its home page to find HOWTOs and other documents.

GETTING HELP WITH THE SYSTEM

/ust/share/doc

Ubuntu Web sites

GNOME provides tooltips (page 106), a context-sensitive Help system, and Ubuntu
provides the help center discussed on page 124.

FINDING HELP LOCALLY

The /usr/src/linux/Documentation (present only if you installed the kernel source
code as explained in Chapter 16) and /usr/share/doc directories often contain more
detailed and different information about a utility than man or info provides.
Frequently this information is meant for people who will be compiling and modify-
ing the utility, not just using it. These directories hold thousands of files, each con-
taining information on a separate topic.

USING THE INTERNET TO GET HELP

The Internet provides many helpful sites related to Linux. Aside from sites that carry
various forms of documentation, you can enter an error message from a program
you are having a problem with in a search engine such as Google (www.google.com,
or its Linux-specific version at www.google.com/linux). Enclose the error message
within double quotation marks to improve the quality of the results. The search will
likely yield a post concerning your problem and suggestions about how to solve it.
See Figure 4-32.

The Ubuntu Web site is a rich source of information. The following list identifies
some locations that may be of interest:

www.google.com
www.google.com/linux

WHERE TO FIND DOCUMENTATION 131

GNU

The Linux
Documentation
Project

¢ Ubuntu documentation is available at help.ubuntu.com.
¢ Ubuntu community documentation is available at help.ubuntu.com/community.
® You can find answers to many questions at answers.launchpad.net/ubuntu.

¢ The Ubuntu forums (ubuntuforums.org) is a good place to find answers to
questions.

® You can talk with other Ubuntu users using IRC (Internet relay chat). See
help.ubuntu.com/community/InternetRelayChat for a list of Ubuntu IRC
channels available via the Freenode IRC service.

® You can subscribe to Ubuntu mailing lists. See lists.ubuntu.com.

* You can search for information about packages and find out which pack-
age contains a specific file at packages.ubuntu.com.

GNU manuals are available at www.gnu.org/manual. In addition, you can visit the
GNU home page (www.gnu.org) for more documentation and other GNU resources.
Many of the GNU pages and resources are available in a variety of languages.

The Linux Documentation Project (www.tldp.org), which has been around for almost
as long as Linux, houses a complete collection of guides, HOWTOs, FAQs, man pages,
and Linux magazines. The home page is available in English, Portuguese, Spanish,
Italian, Korean, and French. It is easy to use and supports local text searches. It also
provides a complete set of links (Figure 4-33) you can use to find almost anything you
want related to Linux (click Links in the Search box or go to www.tldp.org/links). The
links page includes sections on general information, events, getting started, user
groups, mailing lists, and newsgroups, with each section containing many subsections.

Thet NP ochmentation Project="MozilIa Eirefox

Ele Edit wiew History Bookmarks Iools Help £

E-0 - @ (3 [T hupyidp.org [=][®] [Gl-]Google &)

LDP Worldwide

Documents

HOWTOs: subject-specific help Search /
latest updates | main index | Resources
browse by category

Guides: longer, in-depth books
latest updates f main index
FAQs: Frequently Asked Questions
latest updates / main index
man pages: help on individual commands
(20060810)

Linux online magazine
Gazette:

Figure 4-33 The Linux Documentation Project home page

www.gnu.org/manual
www.gnu.org
www.tldp.org
www.tldp.org/links

132 CHAPTER4 INTRODUCTION TO UBUNTU LINUX

MORE ABOUT LOGGING IN

Refer to “Logging In on the System” on page 89 for information about logging in.
This section covers options you can choose from the Login screen and solutions to
common login problems. It also describes how to log in from a terminal and from a
remote system.

Always use a password

Unless you are the only user of a system; the system is not connected to any other systems, the
Internet, or a modem; and you are the only one with physical access to the system, it is poor prac-
tice to maintain a user account without a password.

THE LOGIN SCREEN

At the lower-left corner of the Login screen is a small object labeled Options
(Figure 4-1, page 90). Click this object or press Fi0 to display the Actions menu,
which has the following selections:

e Select Language Displays a window from which you can select the lan-
guage for the session you are about to start. This change affects window
titles, prompts, error messages, and other textual items displayed by
GNOME and many applications. Just after you log in, the system asks
whether you want to make the language you specified the default language
or just use it for this session.

e Select Session Displays the Sessions dialog box, which presents several
choices concerning the session you are about to start. Choose one of the
following, click Change Session, and continue logging in:

o Last Session Brings up the same desktop environment you used the
last time you logged in. This choice is the default.

+ Run Xclient script Brings up the default desktop environment.
+ GNOME Brings up the GNOME desktop environment.

+ KDE Brings up the KDE desktop environment (if you have installed
Kubuntu or KDE, see page 60).

+ Failsafe GNOME Brings up a default GNOME session without run-
ning any startup scripts. Use this choice to fix problems that prevent
you from logging in normally.

+ Failsafe Terminal Brings up an xterm terminal emulator window
without a desktop manager and without running any startup scripts.
This setup allows you to log in on a minimal desktop when your stan-
dard login does not work well enough to allow you to log in to fix a
problem. Give the command exit from the xterm window to log out
and display the Login screen.

MORE ABOUT LOGGING IN 133

Just after you log in, the system asks whether to use your selection from
the Sessions dialog box just for this session or permanently. The failsafe
logins do not ask this question.

¢ Restart Shuts down and reboots the system.
e Shut Down Shuts down the system and turns off the power.

¢ Suspend Puts the system in power-saving mode. Exactly what this selec-
tion does depends on the hardware.

WHAT 1O DO IF You CANNOT LOG IN

If you enter either your username or password incorrectly, the system displays an
error message after you enter both your username and your password. This message
indicates you have entered either the username or the password incorrectly or they
are not valid. It does not differentiate between an unacceptable username and an
unacceptable password—a strategy meant to discourage unauthorized people from
guessing names and passwords to gain access to the system. Following are some
common reasons why logins fail:

¢ The username and password are case sensitive. Make sure the CAPS LOCK key
is off and enter your username and password exactly as specified or as you
set them up.

* You are not logging in on the right machine. The login/password combina-
tion may not be valid if you are trying to log in on the wrong machine. On
a larger, networked system, you may have to specify the machine you want
to connect to before you can log in.

® Your username is not valid. The login/password combination may not be
valid if you have not been set up as a user. If you are the system adminis-
trator, refer to “Configuring User and Group Accounts” on page 658.
Otherwise, check with the system administrator.

e A filesystem is full. When a filesystem critical to the login process is full, it
may appear as though you have logged in successfully, but after a moment
the login screen reappears. You must log in using one of the failsafe logins
and delete some files.

Refer to “Changing Your Password” on page 135 if you want to change your password.

LOGGING IN REMOTELY: TERMINAL EMULATORS, ssh,
AND DIAL-UP CONNECTIONS

When you are not using a console, terminal, or other device connected directly to
the Linux system you are logging in on, you are probably connected to the Linux
system using terminal emulation software on another system. Running on the local
system, this software connects to the remote Linux system via a network (Ethernet,
asynchronous phone line, PPP, or other type) and allows you to log in.

134 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

Make sure TERM is set correctly

No matter how you connect, make sure you have the TERM variable set to the type of terminal your
emulator is emulating. For more information refer to “Specifying a Terminal” on page 988.

When you log in via a dial-up line, the connection is straightforward: You instruct
the local emulator program to contact the remote Linux system, it dials the phone,
and the remote system displays a login prompt. When you log in via a directly con-
nected network, you use ssh (secure, page 714) or telnet (not secure, page 373) to
connect to the remote system. The ssh program has been implemented on many
operating systems, not just Linux. Many user interfaces to ssh include a terminal
emulator. From an Apple, PC, or UNIX machine, open the program that runs ssh
and give it the name or IP address (refer to “Host Address” on page 363) of the
system you want to log in on. For examples and more details on working with a
terminal emulator, refer to “Running Commands from a Terminal Emulator/Shell”
on page 114. The next section provides more information about logging in from a
terminal emulator.

LOGGING IN FROM A TERMINAL (EMULATOR)

Before you log in on a terminal, terminal emulator, or other textual device, the sys-
tem displays a message called issue (stored in the /etc/issue file) that identifies the
version of Ubuntu Linux running on the system. A sample issue message follows:

Ubuntu 7.10 tiny ttyl

This message is followed by a prompt to log in. Enter your username and password
in response to the system prompts. If you are using a terminal (page 1064) and the
screen does not display the login: prompt, check whether the terminal is plugged in
and turned on, and then press the RETURN key a few times. If login: still does not
appear, try pressing CONTROL-Q. If you are using a workstation (page 1069), run ssh
(page 714), telnet (page 373), or whatever communications/emulation software you
use to log in on the system. Log in.

Did you log in last?

As you are logging in to a textual environment, after you enter your username and password, the
system displays information about the last login on this account, showing when it took place and
where it originated. You can use this information to determine whether anyone else has accessed
the account since you last used it. If someone has, perhaps an unauthorized user has learned your
password and logged on as you. In the interest of maintaining security, advise the system admin-
istrator of any circumstances that make you suspicious and change your password.

Next the shell prompt (or just prompt) appears, indicating you have successfully
logged in; it indicates the system is ready for you to give a command. The first shell
prompt line may be preceded by a short message called the message of the day, or
motd (page 559), which is stored in the /etc/motd file. Ubuntu Linux establishes a
prompt of [user@bost: directory]$, where user is your username, host is the name of

MORE ABOUT LOGGING IN 135

the local system, and directory is the name of the directory you are working in. A
tilde (~) represents your home directory. For information on how to change the
prompt, refer to page 303.

CHANGING YOUR PASSWORD

If someone else assigned you a password, it is a good idea to give yourself a new one.
For security reasons none of the passwords you enter is displayed by any utility.

Protect your password

Do not allow someone to find out your password: Do not put your password in a file that is not
encrypted, allow someone to watch you type your password, or give your password to someone
you do not know (a system administrator never needs to know your password). You can always
write your password down and keep it in a safe, private place.

Choose a password that is difficult to guess

Do not use phone numbers, names of pets or kids, birthdays, words from a dictionary (not even
aforeign language), and so forth. Do not use permutations of these items or a 133t-speak variation
of a word as modern dictionary crackers may also try these permutations.

Differentiate between important and less important passwords

It is a good idea to differentiate between important and less important passwords. For example,
Web site passwords for blogs or download access are not very important; it is acceptable to use
the same password for these types of sites. However, your login, mail server, and bank account
Web site passwords are critical: Never use these passwords for an unimportant Web site.

To change your password, select Main menu: System=Preferences= About Me and
click Change Password. From a command line, give the command passwd.

The first item the system asks for is your current (old) password. This password is
verified to ensure that an unauthorized user is not trying to alter your password.
Then the system requests a new password.

A password should contain a combination of numbers, uppercase and lowercase let-
ters, and punctuation characters and meet the following criteria to be relatively secure:

® Must be at least four characters long (or longer if the system administrator
sets it up that way). Seven or eight characters is a good compromise
between length and security.

¢ Should not be a word in a dictionary of any language, no matter how
seemingly obscure.

¢ Should not be the name of a person, place, pet, or other thing that might
be discovered easily.

¢ Should contain at least two letters and one digit or punctuation character.

¢ Should not be your username, the reverse of your username, or your user-
name shifted by one or more characters.

136 CHAPTER4 INTRODUCTION TO UBUNTU LINUX

Only the first item is mandatory. Avoid using control characters (such as CONTROL-H)
because they may have a special meaning to the system, making it impossible for
you to log in. If you are changing your password, the new password should differ
from the old one by at least three characters. Changing the case of a character does
not make it count as a different character. Refer to “Keeping the System Secure” on
page 682 for more information about choosing a password.

After you enter your new password, the system asks you to retype it to make sure
you did not make a mistake when you entered it the first time. If the new password is
the same both times you enter it, your password is changed. If the passwords differ,
you made an error in one of them. In this situation the system displays an error mes-
sage or does not allow you to click the OK button. If the password you enter is not
long enough, the system displays a message similar to The password is too short.

When you successfully change your password, you change the way you log in. If
you forget your password, a user running with root privileges can change it and tell
you the new password.

USING VIRTUAL CONSOLES

When running Linux on a personal computer, you frequently work with the display
and keyboard attached to the computer. Using this physical console, you can access
as many as 63 virtual consoles (also called virtual terminals). Some are set up to
allow logins; others act as graphical displays. To switch between virtual consoles,
hold the conTROL and ALT keys down and press the function key that corresponds to
the console you want to view. For example, CONTROL-ALT5 displays the fifth virtual
console. This book refers to the console you see when you press CONTROL-ALT-FI as the
system console, or just console.

By default, six virtual consoles are active and have textual login sessions running.
When you want to use both textual and graphical interfaces, you can set up a tex-
tual session on one virtual console and a graphical session on another. No matter
which virtual console you start a graphical session from, the graphical session runs
on the first unused virtual console (number seven by default).

WORKING FROM THE COMMAND LINE

Before the introduction of the graphical user interface (GUI), UNIX and then Linux
provided only a command line (textual) interface (CLI). Today, a CLI is available
when you log in from a terminal, a terminal emulator, a textual virtual console, or
when you use ssh (page 711) or telnet (insecure, page 373) to log in on a system.

This section introduces the Linux CLI. Chapter 5 describes some of the more
important utilities you can use from the command line. Most of the examples in
Parts IV and V of this book use the CLI, adding examples of graphical tools where
available.

WORKING FROM THE COMMAND LINE 137

Advantages of Although the concept may seem antiquated, the CLI has a place in modern comput-
the CLI ing. In some cases an administrator may use a command line tool either because a
graphical equivalent does not exist or because the graphical tool is not as powerful
or flexible as the textual one. Frequently, on a server system, a graphical interface
may not even be installed. The first reason for this omission is that a GUI consumes
a lot of system resources; on a server, those resources are better dedicated to the main
task of the server. Additionally, security mandates that a server system run as few
tasks as possible because each additional task can make the system more vulnerable
to attack.

Pseudographical Before the introduction of GUIs, resourceful programmers created textual interfaces
interface that included graphical elements such as boxes, borders outlining rudimentary win-
dows, highlights, and, more recently, color. These textual interfaces, called pseudo-

graphical interfaces, bridge the gap between textual and graphical interfaces.

One example of a modern utility that uses a pseudographical interface is the dpkg-
reconfigure utility, which reconfigures an installed software package.

CORRECTING MISTAKES

This section explains how to correct typographical and other errors you may make
while you are logged in on a textual display. Because the shell and most other utili-
ties do not interpret the command line or other text until after you press RETURN, you
can readily correct typing mistakes before you press RETURN.

You can correct typing mistakes in several ways: erase one character at a time, back
up a word at a time, or back up to the beginning of the command line in one step.
After you press RETURN, it is too late to correct a mistake: You must either wait for the
command to run to completion or abort execution of the program (page 138).

ERASING A CHARACTER

While entering characters from the keyboard, you can back up and erase a mistake
by pressing the erase key once for each character you want to delete. The erase key
backs over as many characters as you wish. It does not, in general, back up past the
beginning of the line.

The default erase key is BACKSPACE. If this key does not work, try DELETE or CONTROLH. If
these keys do not work, give the following stty> command to set the erase and line
kill (see “Deleting a Line”) keys to their default values:

§ stty ek

DELETING A WORD

You can delete a word you entered by pressing CONTROLW. A word is any sequence of
characters that does not contain a SPACE or TAB. When you press CONTROL-W, the cursor

2. The command stty is an abbreviation for set teletypewriter, the first terminal that UNIX was run on.
Today stty is commonly thought of as set terminal.

138 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

CONTROL-Z suspends a program

Although it is not a way of correcting a mistake, you may press the suspend key (typically CONTROL-Z)
by mistake and wonder what happened (you will see a message containing the word Stopped). You
have just stopped your job, using job control (page 290). Give the command fg to continue your job
in the foreground, and you should return to where you were before you pressed the suspend key. For
more information refer to “bg: Sends a Job to the Background” on page 291.

moves left to the beginning of the current word (as you are entering a word) or the
previous word (when you have just entered a SPACE or TAB), removing the word.

DELETING A LINE

Any time before you press RETURN, you can delete the line you are entering by press-
ing the (line) kill key. When you press this key, the cursor moves to the left, erasing
characters as it goes, back to the beginning of the line. The default line kill key is
CONTROL-U. If this key does not work, try CONTROLX. If these keys do not work, give the
stty command described under “Erasing a Character.”

ABORTING EXECUTION

Sometimes you may want to terminate a running program. For example, you may
want to stop a program that is performing a lengthy task such as displaying the con-
tents of a file that is several hundred pages long or copying a file that is not the one
you meant to copy.

To terminate a program from a textual display, press the interrupt key (CONTROL-C or
sometimes DELETE or DEL). When you press this key, the Linux operating system
sends a terminal interrupt signal to the program you are running and to the shell.
Exactly what effect this signal has depends on the program. Some programs stop
execution immediately, some ignore the signal, and some take other actions.
When it receives a terminal interrupt signal, the shell displays a prompt and waits
for another command.

If these methods do not terminate the program, try stopping the program with the
suspend key (typically CONTROLZ), giving a jobs command to verify the number of the
job running the program, and using kill to abort the job. The job number is the num-
ber within the brackets at the left end of the line that jobs displays ([1]). The kill
command (page 522) uses =-TERM to send a termination signal® to the job specified
by the job number, which is preceded by a percent sign (%1):

$ bigjob

4

[1]+ Stopped bigjob
$ jobs

[1]+ Stopped bigjob

3. When the terminal interrupt signal does not work, use the kill (-KILL) signal. A running program can-
not ignore a kill signal; it is sure to abort the program (page 522).

CONTROLLING WINDOWS: ADVANCED OPERATIONS 139

$ kill -TERM %1
$ RETURN
[1]+ Killed bigjob

The kill command returns a prompt; press RETURN again to see the confirmation mes-
sage. For more information refer to “Running a Program in the Background” on
page 237.

REPEATING/EDITING COMMAND LINES

To repeat a previous command, press the UP ARROW key. Each time you press this key,
the shell displays an earlier command line. To reexecute the displayed command
line, press RETURN. Press the DOWN ARROW key to browse through the command lines in
the other direction.

The RIGHT and LEFT ARROW keys move the cursor back and forth along the displayed
command line. At any point along the command line, you can add characters by
typing them. Use the erase key to remove characters from the command line. For
information about more complex command line editing, see page 314.

optional

CONTROLLING WINDOWS: ADVANCED OPERATIONS

Refer to “Windows” on page 111 for an introduction to working with windows
under Ubuntu Linux. This section explores changing the input focus on the work-
space, changing the resolution of the display, and understanding more about the
window manager.

CHANGING THE INPUT FOcCus

When you type on the keyboard, the window manager (page 141) directs the char-
acters you type somewhere, usually to a window. The active window (the window
accepting input from the keyboard) is said to have the input focus. Depending on
how you set up your account, you can use the mouse in one of three ways to change
the input focus (you can also use the keyboard; see page 112):

¢ Click-to-focus (explicit focus) Gives the input focus to a window when
you click the window. That window continues to accept input from the
keyboard regardless of the location of the mouse pointer. The window
loses the focus when you click another window. Although clicking the
middle or the right mouse button also activates a window, use only the left
mouse button for this purpose; other buttons may have unexpected effects
when you use them to activate a window.

¢ Focus-follows-mouse (sloppy focus, enter-only, or focus-under-mouse)
Gives the input focus to a window when you move the mouse pointer onto
the window. That window maintains the input focus until you move the

140 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

GNOME

mouse pointer onto another window, at which point the new window gets
the focus. Specifically, when you move the mouse pointer off a window
and onto the root window, the window that had the input focus does not
lose it.

¢ Focus-strictly-under-mouse (enter-exit) Gives the input focus to a win-
dow when you move the mouse pointer onto the window. That window
maintains the input focus until you move the mouse pointer off if it, at
which point no window has the focus. Specifically, when you move the
mouse pointer off a window and onto the root window, the window that
had the input focus loses it, and input from the keyboard is lost.

The Window Preferences window changes the focus policy. To display this window,
select Main menu: System= Preferences=Windows or give the command gnome-
window-properties from a terminal emulator or Run Application window (ALT-R2).
Put a tick in the check box next to Select windows when the mouse moves over
them to select the focus-follows-mouse policy. When there is no tick in this check
box, click-to-focus is in effect. Click Close. Focus-strictly-under-mouse is not avail-
able from this window.

To determine which window has the input focus, compare the window borders. The
border color of the active window is different from the others or, on a monochrome
display, is darker. Another indication that a window is active is that the keyboard
cursor is a solid rectangle; in windows that are not active, the cursor is an outline of
a rectangle.

Use the following tests to determine which keyboard focus method you are using. If
you position the mouse pointer in a window and that window does not get the
input focus, your window manager is configured to use the click-to-focus method. If
the border of the window changes, you are using the focus-follows-mouse or focus-
strictly-under-mouse method. To determine which of the latter methods you are
using, start typing something, with the mouse pointer positioned on the active win-
dow. Then move the mouse pointer over the root window and continue typing. If
characters continue to appear within the window, you are using focus-follows-
mouse. Otherwise, you are using focus-strictly-under-mouse.

CHANGING THE RESOLUTION OF THE DISPLAY

The X server (the basis for the Linux graphical interface; see page 252) starts at a
specific display resolution and color depth (page 1029). Although you can change
the color depth only when you start an X server, you can change the resolution
while the X server is running. The number of resolutions available depends both on
the display hardware and on the configuration of the X server (see page 75 for
details). Many users prefer to do most of their work at a higher resolution but
might want to switch to a lower resolution for some tasks, such as playing games.
You can switch between display resolutions by pressing either CONTROL-ALT-KEYPAD-+ or
CONTROL-ALT-KEYPAD-—, using the + and — on the keyboard’s numeric keypad. You can

CONTROLLING WINDOWS: ADVANCED OPERATIONS 141

also use the Screen and Graphics Preferences window to change the resolution of
the display (page 75).

Changing to a lower resolution has the effect of zooming in on the display; as a
result, you may no longer be able to view the entire workspace at once. You can
scroll the display by pushing the mouse pointer against the edge of the screen.

THE WINDOW MANAGER

Window decorations

A window manager—the program that controls the look and feel of the basic
GUI—runs under a desktop manager (such as GNOME or KDE) and controls all
aspects of the windows in the X Window System environment. The window man-
ager defines the appearance of the windows on the desktop and controls how you
operate and position them: open, close, move, resize, minimize, and so on. It may
also handle some session management functions, such as how a session is paused,
resumed, restarted, or ended (page 104).

A window manager controls window decorations—that is, the titlebar and border
of a window. Aside from the aesthetic aspects of changing window decorations, you
can alter their functionality by modifying the number and placement of buttons on
the titlebar.

The window manager takes care of window manipulation so client programs do not
need to. This setup is very different from that of many other operating systems, and
the way that GNOME deals with window managers is different from how other
desktop environments work. Window managers do more than simply manage win-
dows—they provide a useful, good-looking, graphical shell to work from. Their
open design allows users to define their own policy down to the fine details.

Theoretically GNOME is not dependent on any particular window manager and
can work with any of several window managers. Because of their flexibility, you
would not see major parts of the desktop environment change if you were to switch
from one window manager to another. A desktop manager collaborates with the
window manager to make your work environment intuitive and easy to use.
Although the desktop manager does not control window placement, it does get
information from the window manager about window placement.

UBUNTU LINUX WINDOW MANAGERS

Metacity and Compiz—the default window managers for Ubuntu GNOME—provide
window management and start many components through GNOME panel objects.
They also communicate with and facilitate access to other components in the environ-
ment. The Visual Effects tab of the Appearance Preferences window (page 103)
allows you to switch between Metacity and Compiz.

Using the standard X libraries, programmers have created other window managers,
including blackbox, fluxbox, and WindowMaker. You can use Synaptic (page 121)
to install any of these packages.

142 CHAPTER 4

INTRODUCTION TO UBUNTU LINUX

USING A WINDOW MANAGER WITHOUT A DESKTOP MANAGER

It is interesting to see exactly where the line that separates the window manager and
the desktop manager falls. Toward this end, you can run the Failsafe Terminal from
the Login screen: Specify Options: Select Session= Failsafe Terminal and log in. You
should see a clean screen with an undecorated window running xterm. You can give
commands from this window to open other windows. Try xeyes, xterm, and xclock.
Give the command exit to return to the Login screen.

CHAPTER SUMMARY

As with many operating systems, your access to a Linux system is authorized when
you log in. You enter your username and password on the Login screen. You can
change your password at any time while you are logged in. Choose a password that
is difficult to guess and that conforms to the criteria imposed by the utility that
changes your password.

The system administrator is responsible for maintaining the system. On a single-
user system, you are the system administrator. On a small, multiuser system, you
or another user may act as the system administrator, or this job may be shared. On
a large, multiuser system or a network of systems, there is frequently a full-time
system administrator. When extra privileges are required to perform certain system
tasks, the system administrator uses sudo to obtain extra privileges, called root
privileges. An administrator working with root privileges is sometimes referred to
as Superuser.

Do not work with root privileges as a matter of course. When you have to do some-
thing that requires root privileges, work with root privileges for only as long as
absolutely necessary; revert to working as yourself as soon as possible.

Understanding the desktop and its components is essential to getting the most out
of the Ubuntu GUI. The panels offer a convenient way to launch applications, either
by clicking objects or by using the Main menu. The Main menu is a multilevel menu
you can use to customize and maintain the system and to start many common appli-
cations. A window is the graphical manifestation of an application. You can control
its size, location, and appearance by clicking buttons on the window’s titlebar. A
terminal emulator allows you to use the Linux command line interface from a
graphical environment. You can use a terminal emulator to launch both textual and
graphical programs.

Panels and menus enable you to select an object (which can be just about anything
on the system). On a panel, you generally click an object; on a menu, you typically
click text in a list.

The GNOME environment provides the casual user, the office worker, the power
user, and the programmer/system designer a space to work in and a set of tools to

EXERCISES 143

work with. GNOME also provides off-the-shelf productivity and many ways to
customize its look, feel, and response.

Nautilus is GNOME’s simple, yet powerful file manager. It can create, open, dis-
play, move, and copy files and directories as well as execute programs and scripts.
One of its most basic and important functions is to create and manage the desktop.

The man utility provides online documentation for system utilities. This utility is
helpful both to new Linux users and to experienced users who must often delve into
system documentation for information on the finer points of a utility’s behavior.
The info utility also helps the beginner and the expert alike. It provides a tutorial on
its use and documentation on many Linux utilities.

The textual or command line interface (CLI) continues to have a place in modern
computing. For example, sometimes a graphical tool does not exist or may not be as
powerful or flexible as its textual counterpart. Security concerns on a server system
mandate that the system run as few tasks as possible. Because each additional task

can make a server more vulnerable to attack, frequently these systems do not have
GUIs installed.

EXERCISES

1. The system displays the following message when you attempt to log in
with an incorrect username or an incorrect password:

Incorrect username or password. Letters must be typed in the
correct case.

This message does not indicate whether your username, your password, or
both are invalid. Why does it not reveal this information?

2. Give three examples of poor password choices. What is wrong with each?
3. Is fido an acceptable password? Give several reasons why or why not.

4. What is a context menu? How does a context menu differ from other
menus?

5. What appears when you right-click the root window? How can you use
this object?

6. How would you swap the effects of the right and left buttons on a mouse?
What is the drag and drop threshold? How would you change it?

7. What are the primary functions of the Main menu?

8. What is the input focus? When no window has the input focus, what hap-
pens to the letters you type on the keyboard? Which type of input focus
would you prefer to work with? Why?

144 CHAPTER4 INTRODUCTION TO UBUNTU LINUX

9.

10.

11.

What are the functions of a Window Operations menu? How do you dis-
play this menu?

What is a panel? Name a few objects on the panels and explain what you
can use them for. What do the Workspace Switcher applet and the Win-
dow List applets do?

What are tooltips? How are they useful?

ADVANCED EXERCISES

12.

13.

14.

15.

16.

17.

What change does the mouse pointer undergo when you move it to the
edge of a window? What happens when you right-click and drag the
mouse pointer when it looks like this? Repeat this experiment with the
mouse pointer at the corner of a window.

Try the experiment described in “Using a Window Manager Without a
Desktop Manager” on page 142. What is missing from the screen? Based
only on what you see, describe what a window manager does. How does a
desktop manager make it easier to work with a GUI?

When the characters you type do not appear on the screen, what might be
wrong? How can you fix this problem?

What happens when you run vim from the Run Command window with-
out specifying that it be run in a terminal? Where does the output go?

The example on page 126 shows that the man pages for passwd appear in
sections 1 and 5 of the system manual. Explain how you can use man to
determine which sections of the system manual contain a manual page
with a given name.

How many man pages are in the Devices subsection of the system manual?
(Hint: Devices is a subsection of Special Files.)

IN THIS CHAPTER

Special Characters 146
Basic Utilities 147
less Is more: Display a Text File

One ScreenataTime 148
Working with Files............. 149
lpr: PrintsaFile............... 151

| (Pipe): Communicates Between
Processes.................. 156

Compressing and Archiving
Files « et 159

Obtaining User and System
Information................ 166

Tutorial: Creating and Editing a File
withvim................... 172

THE LINUX UTILITIES

When Linus Torvalds introduced Linux and for a long time
thereafter, Linux did not have a graphical user interface (GUI): It
ran on character-based terminals only. All the tools ran from a
command line. Today the Linux GUI is important but many
people—especially system administrators—run many command
line programs. Command line utilities are often faster, more
powerful, or more complete than their GUI counterparts. Some-
times there is no GUI counterpart to a textual utility; some peo-
ple just prefer the hands-on feeling of the command line.

When you work with a command line interface, you are work-
ing with a shell (Chapters 7, 9, and 11). Before you start
working with a shell, it is important that you understand
something about the characters that are special to the shell, so
this chapter starts with a discussion of special characters. The
chapter then describes five basic utilities: Is, cat, rm, less, and
hostname. It continues by describing several other file manipu-
lation utilities as well as utilities that find out who is logged
in; that communicate with other users; that print, compress,
and decompress files; and that pack and unpack archive files.

145

146 CHAPTERS

THE LINUX UTILITIES

Run these utilities from a command line

This chapter describes command line, or textual, utilities. You can experiment with these utilities
from a terminal, a terminal emulator within a GUI (page 114), or a virtual console (page 136).

SPECIAL CHARACTERS

Whitespace

Quoting special
characters

Backslash

Single quotation
marks

optional

Special characters, which have a special meaning to the shell, are discussed in “File-
name Generation/Pathname Expansion” on page 239. These characters are men-
tioned here so that you can avoid accidentally using them as regular characters until
you understand how the shell interprets them. For example, it is best to avoid using
any of the following characters in a filename (even though emacs and some other
programs do) because they make the file harder to reference on the command line:

&3 2" " VLT ()S<>{}Y#/\! ~

Although not considered special characters, RETURN, SPACE, and TAB also have special
meanings to the shell. RETURN usually ends a command line and initiates execution of
a command. The SPACE and TAB characters separate elements on the command line
and are collectively known as whitespace or blanks.

If you need to use a character that has a special meaning to the shell as a regular
character, you can quote (or escape) it. When you quote a special character, you
keep the shell from giving it special meaning. The shell treats a quoted special char-
acter as a regular character. However, a slash (/) is always a separator in a path-
name, even when you quote it.

To quote a character, precede it with a backslash (\). When two or more special
characters appear together, you must precede each with a backslash (for example,
you would enter * 3 as **). You can quote a backslash just as you would quote
any other special character—by preceding it with a backslash (\\).

Another way of quoting special characters is to enclose them between single quota-
tion marks: '*#%'. You can quote many special and regular characters between a
pair of single quotation marks: '"This is a special character: >'. The regular charac-
ters are interpreted as usual, and the shell also interprets the special characters as

regular characters.

The only way to quote the erase character (CONTROLH), the line kill character
(CONTROL-U), and other control characters (try CONTROL-M) is by preceding each with a
CONTROL-V. Single quotation marks and backslashes do not work. Try the following:

$ echo 'xxxXxXxXCONTROL-U'
$ echo xXxXXXXCONTROL-VCONTROL-U

Although you cannot see the CONTROL-U displayed by the second of the preceding pair
of commands, it is there. The following command sends the output of echo
(page 157) through a pipe (page 156) to od (see the od man page) to display CONTROL-U
as octal 25 (025):

Basic UTILITIES 147

$ echo xxxxXxXCONTROL-VCONTROL-U | od -c
0000000 X X X X X X 025 \n
0000010

The \n is the NEWLINE character that echo sends at the end of its output.

BAsIc UTILITIES

One of the important advantages of Linux is that it comes with thousands of utili-
ties that perform myriad functions. You will use utilities whenever you work with
Linux, whether you use them directly by name from the command line or indirectly
from a menu or icon. The following sections discuss some of the most basic and
important utilities; these utilities are available from a character-based interface.
Some of the more important utilities are also available from a GUI; others are avail-
able only from a GUL

Folder The term directory is used extensively in the next sections. A directory is a resource
that can hold files. On other operating systems, including Windows and Macintosh,
and frequently when speaking about a Linux GUI, a directory is referred to as a
folder. That is a good analogy: A traditional manila folder holds files just as a direc-
tory does.

In this chapter you work in your home directory

When you log in on the system, you are working in your home directory. In this chapter that is the
only directory you use: All the files you create in this chapter are in your home directory. Chapter 6
goes into more detail about directories.

[s: LisTS THE NAMES OF FILES

Using the editor of your choice, create a small file named practice. (A tutorial on the
vim editor appears on page 172.) After exiting from the editor, you can use the Is
(list) utility to display a list of the names of the files in your home directory. In the
first command in Figure 5-1 (next page), Is lists the name of the practice file. (You
may also see files the system or a program created automatically.) Subsequent com-
mands in Figure 5-1 display the contents of the file and remove the file. These com-
mands are described next.

cat: DISPLAYS A TEXT FILE

The cat utility displays the contents of a text file. The name of the command is
derived from catenate, which means to join together, one after the other. (Figure 7-8
on page 230 shows how to use cat to string together the contents of three files.)

A convenient way to display the contents of a file to the screen is by giving the com-
mand cat, followed by a sPACE and the filename. Figure 5-1 shows cat displaying the
contents of practice. This figure shows the difference between the Is and cat utilities:
The Is utility displays the name of a file, whereas cat displays the contents of a file.

148 CHAPTERS5 THE LINUX UTILITIES

$ 1s

practice

$ cat practice

This is a small file that I created

with a text editor.

$ rm practice

$ 1s

$ cat practice

cat: practice: No such file or directory
$

Figure 5-1 Using Is, cat, and rm on the file named practice

rm: DELETES A FILE

The rm (remove) utility deletes a file. Figure 5-1 shows rm deleting the file named
practice. After rm deletes the file, Is and cat show that practice is no longer in the
directory. The Is utility does not list its filename, and cat says that no such file exists.
Use rm carefully.

A safer way of removing files

You can use the interactive form of rm to make sure that you delete only the file(s) you intend to
delete. When you follow rm with the —i option (see page 126 for a tip on options) and the name
of the file you want to delete, rm displays the name of the file and then waits for you to respond
with y (yes) before it deletes the file. It does not delete the file if you respond with a string that
does not begin with y.

$ rm -1 toollist

rm: remove regular file 'toollist'? y
Optional: You can create an alias (page 328) for rm —i and put it in your startup file (page 188) so
that rm always runs in interactive mode.

less Is more: DISPLAY A TEXT FILE ONE SCREEN AT A TIME

Pagers When you want to view a file that is longer than one screen, you can use either the
less utility or the more utility. Each of these utilities pauses after displaying a screen
of text. Because these utilities show one page at a time, they are called pagers.
Although less and more are very similar, they have subtle differences. At the end of
the file, for example, less displays an EOF (end of file) message and waits for you to
press q before returning you to the shell. In contrast, more returns you directly to
the shell. In both utilities you can press h to display a Help screen that lists com-
mands you can use while paging through a file. Give the commands less practice
and more practice in place of the cat command in Figure 5-1 to see how these com-
mands work. Use the command less /etc/termcap instead if you want to experiment
with a longer file. Refer to the less man page for more information.

WORKING WITH FILES 149

hostname: DISPLAYS THE SYSTEM NAME

The hostname utility displays the name of the system you are working on. Use this
utility if you are not sure that you are logged in on the right machine.

$ hostname
bravo.example.com

WORKING WITH FILES

This section describes utilities that copy, move, print, search through, display, sort,
and compare files.

Filename completion

After you enter one or more letters of a filename (following a command) on a command line, press
TAB and the Bourne Again Shell will complete as much of the filename as it can. When only one
filename starts with the characters you entered, the shell completes the filename and places a
SPACE after it. You can keep typing or you can press RETURN to execute the command at this point.
When the characters you entered do not uniquely identify a filename, the shell completes what it
can and waits for more input. When pressing TAB does not change the display, press TAB again to
display a list of possible completions. For more information refer to “Pathname Completion” on
page 324.

cp: COPIES A FILE

The cp (copy) utility (Figure 5-2) makes a copy of a file. This utility can copy any
file, including text and executable program (binary) files. You can use cp to make a
backup copy of a file or a copy to experiment with.

The cp command line uses the following syntax to specify source and destination files:
cp source-file destination-file

The source-file is the name of the file that cp will copy. The destination-file is the
name that cp assigns to the resulting (new) copy of the file.

The cp command line in Figure 5-2 copies the file named memo to memo.copy. The
period is part of the filename—just another character. The initial Is command shows
that memo is the only file in the directory. After the cp command, a second Is shows
two files in the directory, memo and memo.copy.

$ 1s

memo

$ cp memo memo.copy
$ 1s

memo memo . copy

Figure 5-2 cp copies a file

150 CHAPTER5 THE LINUX UTILITIES

Sometimes it is useful to incorporate the date in the name of a copy of a file. The
following example includes the date January 30 (0130) in the copied file:

$ cp memo memo.0130

Although it has no significance to Linux, the date can help you find a version of a
file that you created on a certain date. Including the date can also help you avoid
overwriting existing files by providing a unique filename each day. For more infor-
mation refer to “Filenames” on page 185.

Use scp (page 711) or fip (page 729) when you need to copy a file from one system
to another on a common network.

cp can destroy a file

If the destination-file exists before you give a cp command, cp overwrites it. Because cp over-
writes (and destroys the contents of) an existing destination-file without warning, you must take
care not to cause cp to overwrite a file that you still need. The cp =i (interactive) option prompts
you before it overwrites a file. See page 126 for a tip on options.

The following example assumes that the file named orange.2 exists before you give the cp com-
mand. The user answers y to overwrite the file:

$ cp -1 orange orange.2
cp: overwrite 'orange.2'?y

mv: CHANGES THE NAME OF A FILE

The mv (move) utility can rename a file without making a copy of it. The mv com-
mand line specifies an existing file and a new filename using the same syntax as cp:

muv existing-filename new-filename

The command line in Figure 5-3 changes the name of the file memo to memo.0130.
The initial Is command shows that memo is the only file in the directory. After you
give the mv command, memo.0130 is the only file in the directory. Compare this
result to that of the earlier cp example.

The mv utility can be used for more than changing the name of a file. Refer to “myv,
cp: Move or Copy Files” on page 197. See the mv info page for more information.

mv can destroy a file

Just as cp can destroy a file, so can mv. Also like cp, mv has a =i (interactive) option. See the
caution box labeled “cp can destroy a file.”

$ 1s

memo

$ mv memo memo.0130
$ 1s

memo.0130

Figure 5-3 mv renames a file

WORKING WITH FILES 151

lpr: PRINTS A FILE

The lpr (line printer) utility places one or more files in a print queue for printing.
Linux provides print queues so that only one job is printed on a given printer at a
time. A queue allows several people or jobs to send output simultaneously to a sin-
gle printer with the expected results. On systems that have access to more than one
printer, you can use Ipstat —p to display a list of available printers. Use the —P option
to instruct lpr to place the file in the queue for a specific printer—even one that is
connected to another system on the network. The following command prints the file
named report:

$ 1pr report

Because this command does not specify a printer, the output goes to the default
printer, which is the printer when you have only one printer.

The next command line prints the same file on the printer named mailroom:
$ 1pr -P mailroom report

You can see which jobs are in the print queue by giving an Ipstat —o command or by
using the Ipq utility:

$ Tpq

1p is ready and printing

Rank Owner Job Files Total Size
active alex 86 (standard input) 954061 bytes

In this example, Alex has one job that is being printed; no other jobs are in the
queue. You can use the job number (86 in this case) with the Iprm utility to remove
the job from the print queue and stop it from printing;:

$ 1prm 86

You can send more than one file to the printer with a single command. The follow-
ing command line prints three files on the printer named laser1:

$ 1pr -P laserl 05.txt 108.txt 12.txt

Refer to Chapter 15 for information on setting up a printer and defining the default
printer.

grep: SEARCHES FOR A STRING

The grep! utility searches through one or more files to see whether any contain a
specified string of characters. This utility does not change the file it searches but
simply displays each line that contains the string.

1. Originally the name grep was a play on an ed—an original UNIX editor, available on Ubuntu
Linux—command: g/re/p. In this command g stands for global, re is a regular expression delimited by
slashes, and p means print.

152 CHAPTER5 THE LINUX UTILITIES

$ cat memo
Helen:

In our meeting on June 6 we
discussed the issue of credit.
Have you had any further thoughts
about it?

Alex
$ grep 'credit' memo
discussed the issue of credit.

Figure 5-4 grep searches for a string

The grep command in Figure 5-4 searches through the file memo for lines that con-
tain the string credit and displays a single line that meets this criterion. If memo
contained such words as discredit, creditor, or accreditation, grep would have dis-
played those lines as well because they contain the string it was searching for. The
—-w option causes grep to match only whole words. Although you do not need to
enclose the string you are searching for in single quotation marks, doing so allows
you to put SPACEs and special characters in the search string.

The grep utility can do much more than search for a simple string in a single file.
Refer to the grep info page and Appendix A, “Regular Expressions,” for more infor-
mation.

head: DISPLAYS THE BEGINNING OF A FILE

By default the head utility displays the first ten lines of a file. You can use head to
help you remember what a particular file contains. For example, if you have a file
named months that lists the 12 months of the year in calendar order, one to a line,
then head displays Jan through Oct (Figure 5-5).

This utility can display any number of lines, so you can use it to look at only the
first line of a file, at a full screen, or even more. To specify the number of lines dis-
played, include a hyphen followed by the number of lines in the head command. For
example, the following command displays only the first line of months:

$ head -1 months
Jan

The head utility can also display parts of a file based on a count of blocks or charac-
ters rather than lines. Refer to the head info page for more information.

tail: DISPLAYS THE END OF A FILE

The tail utility is similar to head but by default displays the last ten lines of a file.
Depending on how you invoke it, this utility can display fewer or more than ten
lines, use a count of blocks or characters rather than lines to display parts of a file,

WORKING WITH FILES 153

$ cat months
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

$ head months
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct

Figure 5-5 head displays the first ten lines of a file

and display lines being added to a file that is changing. The following command
causes tail to display the last five lines, Aug through Dec, of the months file shown
in Figure 5-5:

$ tail -5 months
Aug
Sep
Oct
Nov
Dec

You can monitor lines as they are added to the end of the growing file named logfile
with the following command:

$ tail -f logfile

Press the interrupt key (usually CONTROL-C) to stop tail and display the shell prompt.
Refer to the tail info page for more information.

sort: DISPLAYS A FILE IN ORDER

The sort utility displays the contents of a file in order by lines but does not change
the original file.

154 CHAPTER5 THE LINUX UTILITIES

$ cat days
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

$ sort days
Friday
Monday
Saturday
Sunday
Thursday
Tuesday
Wednesday

Figure 5-6 sort displays the lines of a file in order

For example, if a file named days contains the name of each day of the week in cal-
endar order, each on a separate line, then sort displays the file in alphabetical order
(Figure 5-6).

The sort utility is useful for putting lists in order. The —u option generates a sorted
list in which each line is unique (no duplicates). The —n option puts a list of numbers
in order. Refer to the sort info page for more information.

unig: REMOVES DUPLICATE LINES FROM A FILE

The uniq (unique) utility displays a file, skipping adjacent duplicate lines, but does
not change the original file. If a file contains a list of names and has two successive
entries for the same person, uniq skips the extra line (Figure 5-7).

If a file is sorted before it is processed by unig, this utility ensures that no two lines
in the file are the same. (Of course, sort can do that all by itself with the —u option.)
Refer to the uniq info page for more information.

diff: ComPARES Two FILES

The diff (difference) utility compares two files and displays a list of the differences
between them. This utility does not change either file, so it is useful when you want
to compare two versions of a letter or a report or two versions of the source code
for a program.

The diff utility with the —u (unified output format) option first displays two lines
indicating which of the files you are comparing will be denoted by a plus sign (+)
and which by a minus sign (-). In Figure 5-8, a minus sign indicates the colors.1 file;
a plus sign indicates the colors.2 file.

The diff -u command breaks long, multiline text into hunks. Each hunk is preceded
by a line starting and ending with two at signs (@@). This hunk identifier indicates
the starting line number and the number of lines from each file for this hunk. In
Figure 5-8, the hunk covers the section of the colors.1 file (indicated by a minus

WORKING WITH FILES 155

$ cat dups
Cathy

Fred

Joe

John

Mary

Mary

Paula

$ uniq dups
Cathy

Fred

Joe

John

Mary

Paula

Figure 5-7 unig removes duplicate lines

sign) from the first line through the sixth line. The +1,5 then indicates that the hunk
covers colors.2 from the first line through the fifth line.

Following these header lines, diff —u displays each line of text with a leading minus
sign, a leading plus sign, or nothing. A leading minus sign indicates that the line
occurs only in the file denoted by the minus sign. A leading plus sign indicates that
the line comes from the file denoted by the plus sign. A line that begins with neither
a plus sign nor a minus sign occurs in both files in the same location. Refer to the
diff info page for more information.

file: TESTS THE CONTENTS OF A FILE

You can use the file utility to learn about the contents of any file on a Linux system
without having to open and examine the file yourself. In the following example, file
reports that letter_e.bz2 contains data that was compressed by the bzip2 utility
(page 160):

$ file letter_e.bz2
letter_e.bz2: bzip2 compressed data, block size = 900k

$ diff -u colors.l colors.2
--- colors.1 Fri Nov 28 15:45:32 2007
+++ colors.2 Fri Nov 28 15:24:46 2007
@@ -1,6 +1,5 @@

red
+blue

green

yellow

-pink

-purple

orange

Figure 5-8 diff displaying the unified output format

156 CHAPTER5 THE LINUX UTILITIES

Next file reports on two more files:

$ file memo zach.jpg
memo: ASCITI text
zach.jpg: JPEG image data, ... resolution (DPI), 72 x 72

Refer to the file man page for more information.

| (P1PE): COMMUNICATES BETWEEN PROCESSES

Because pipes are integral to the functioning of a Linux system, they are introduced
here for use in examples. Pipes are covered in detail beginning on page 234.

A process is the execution of a command by Linux (page 310). Communication
between processes is one of the hallmarks of both UNIX and Linux. A pipe (written
as a vertical bar, |, on the command line and appearing as a solid or broken vertical
line on keyboards) provides the simplest form of this kind of communication. Sim-
ply put, a pipe takes the output of one utility and sends that output as input to
another utility. Using UNIX/Linux terminology, a pipe takes standard output of one
process and redirects it to become standard input of another process. (For more
information refer to “Standard Input and Standard Output” on page 226.) Most of
what a process displays on the screen is sent to standard output. If you do not redi-
rect it, this output appears on the screen. Using a pipe, you can redirect the output
so that it becomes instead standard input of another utility. For example, a utility
such as head can take its input from a file whose name you specify on the command
line following the word head, or it can take its input from standard input. Thus,
you can give the command shown in Figure 5-5 on page 153 as follows:

$ cat months | head
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct

The next command displays the number of files in a directory. The wec (word count)
utility with the -w option displays the number of words in its standard input or in a
file you specify on the command line:

$ 1s | wc -w
14

You can use a pipe to send output of a program to the printer:

$ tail months | Tpr

FOurR MoRE UTILITIES 157

$ 1s

memo memo.0714 practice
$ echo Hi

Hi

$ echo This is a sentence.
This is a sentence.

$ echo star: =

star: memo memo.0714 practice
$

Figure 5-9 echo copies the command line (but not the word echo) to the screen

FOUR MORE UTILITIES

The echo and date utilities are two of the most frequently used members of the large
collection of Linux utilities. The script utility records part of a session in a file, and
unix2dos makes a copy of a text file that can be read on either a Windows or a
Macintosh machine.

echo: DISPLAYS TEXT

The echo utility copies anything you put on the command line after echo to the
screen. Some examples appear in Figure 5-9. The last example shows what the shell

does with an unquoted asterisk (*) on the command line: It expands the asterisk
into a list of filenames in the directory.

The echo utility is a good tool for learning about the shell and other Linux pro-
grams. Some examples on page 240 use echo to illustrate how special characters,
such as the asterisk, work. Throughout Chapters 7, 9, and 11, echo helps explain
how shell variables work and how you can send messages from shell scripts to the
screen. Refer to the echo info page for more information.

date: DISPLAYS THE TIME AND DATE

The date utility displays the current date and time:

$ date
Thu Jan 24 10:24:00 PST 2008

The following example shows how you can choose the format and select the con-
tents of the output of date:

$ date +"%A %B %d"
Thursday January 24

Refer to the date info page for more information.

158 CHAPTER5 THE LINUX UTILITIES

script: RECORDS A SHELL SESSION

The script utility records all or part of a login session, including your input and the
system’s responses. This utility is useful only from character-based devices, such as
a terminal or a terminal emulator. It does capture a session with vim; however,
because vim uses control characters to position the cursor and display different
typefaces, such as bold, the output will be difficult to read and may not be useful.
When you cat a file that has captured a vim session, the session quickly passes

before your eyes.

By default script captures the session in a file named typescript. To use a different
filename, follow the script command with a SPACE and the new filename. To append
to a file, use the —a option after script but before the filename; otherwise script over-

writes an existing file. Following is a session being recorded by script:

$ script

Script started, file is typescript
mark@lum:~$ whoami

sam

$ 1s -1 /bin | head -5

total 5024
-PWXI-Xr-X
-PWXIr-Xr-X
—PWXF-Xr-X
-PWXI-Xr-X
$ exit
exit

1
1
1
1

Script done,

$

Use the exit command to terminate a script session. You can then view the file you
created with cat, less, more, or an editor. Following is the file that was created by
the preceding script command:

root
root
root
root

file

$ cat typescript

Script started on Mon Sep 24 20:54:

$ whoami
sam

root
root
root
root

is typescript

$ 1s -1 /bin | head -4

total 5024
—PWXF-Xr-X
-PWXI-Xr-X
-PWXI-Xr-X

1
1
1

$ 1s -1 /bin

total 5024
-PWXI-Xr-X
—PWXF-Xr-X
—PWXF-Xr-X
-PWXI-Xr-X
$ exit
exit

1
1
1
1

root
root
root

root
root
root

| head -5

root
root
root
root

root
root
root
root

2928 Sep 21 21:42 archdetect

1054 Apr 26 15:37 autopartition

7168 Sep 21 19:18 autopartition-loop
701008 Aug 27 02:41 bash

2928
1054
7168

2928
1054
7168
701008

Sep
Apr
Sep

Sep
Apr
Sep
Aug

Script done on Mon Sep 24 20:55:29

59 2007

21
26
21

21
26
21

21:
15:
19:

21:
15:
19:
141

2007

42
37
18

42
37
18

archdetect
autopartition
autopartition-Toop

archdetect
autopartition
autopartition-Toop
bash

COMPRESSING AND ARCHIVING FILES 159

unix2dos:
WINDOWS

dos2unix

If you will be editing the file with vim, emacs, or another editor, you can use
dos2unix (below) to eliminate from the typescript file the AM characters that appear
at the ends of the lines. Refer to the script man page for more information.

CONVERTS LINUX AND MACINTOSH FILES TO
FORMAT

If you want to share a text file that you created on a Linux system with someone on
a Windows or Macintosh system, you need to convert the file before the person on
the other system can read it easily. The unix2dos utility converts a Linux text file so
that it can be read on a Windows or Macintosh system. This utility is part of the
tofrodos software package; give the command sudo aptitude install tofrodos to
install this package. Give the following command to convert a file named memo.txt
(created with a text editor) to a DOS-format file:

$ unix2dos memo.txt

Without any options unix2dos overwrites the original file. You can now email the
file as an attachment to someone on a Windows or Macintosh system.

You can use the dos2unix utility to convert Windows or Macintosh files so they can
be read on a Linux system:

$ dos2unix memo.txt
See the unix2dos and dos2unix man pages for more information.

You can also use tr to change a Windows or Macintosh text file into a Linux text
file. In the following example, the —d option causes tr to remove RETURNs (represented
by \r) as it makes a copy of the file:

$ cat memo | tr -d '\r' > memo.txt

The greater than (>) symbol redirects the standard output of tr to the file named
memo.txt. For more information refer to “Redirecting Standard Output” on
page 228. Converting a file the other way without using unix2dos is not as easy.

COMPRESSING AND ARCHIVING FILES

Large files use a lot of disk space and take longer than smaller files to transfer from
one system to another over a network. If you do not need to look at the contents of a
large file very often, you may want to save it on a CD, DVD, or another medium and
remove it from the hard disk. If you have a continuing need for the file, retrieving a
copy from a CD may be inconvenient. To reduce the amount of disk space you use
without removing the file entirely, you can compress the file without losing any of the
information it holds. Similarly a single archive of several files packed into a larger file
is easier to manipulate, upload, download, and email than multiple files. You may fre-
quently download compressed, archived files from the Internet. The utilities described
in this section compress and decompress files and pack and unpack archives.

160 CHAPTERS

THE LINUX UTILITIES

bzip2: COMPRESSES A FILE

.bz2 filename
extension

The bzip2 utility compresses a file by analyzing it and recoding it more efficiently.
The new version of the file looks completely different. In fact, because the new file
contains many nonprinting characters, you cannot view it directly. The bzip2 utility
works particularly well on files that contain a lot of repeated information, such as
text and image data, although most image data is already in a compressed format.

The following example shows a boring file. Each of the 8,000 lines of the letter_e
file contains 72 e’s and a NEWLINE character that marks the end of the line. The file
occupies more than half a megabyte of disk storage.

$ 1s -1
-rw-rw-r-- 1 sam sam 584000 Mar 1 22:31 letter_e

The -1 (long) option causes Is to display more information about a file. Here it
shows that letter_e is 584,000 bytes long. The ——verbose (or —v) option causes bzip2
to report how much it was able to reduce the size of the file. In this case, it shrank
the file by 99.99 percent:

$ bzip2 -v letter_e

Tetter_e: 11680.00:1, 0.001 bits/byte, 99.99% saved, 584000 in, 50 out.

$1s -1

-rw-rw-r-- 1 sam sam 50 Mar 1 22:31 letter_e.bz2
Now the file is only 50 bytes long. The bzip2 utility also renamed the file, appending
.bz2 to its name. This naming convention reminds you that the file is compressed;
you would not want to display or print it, for example, without first decompressing
it. The bzip2 utility does not change the modification date associated with the file,
even though it completely changes the file’s contents.

In the following, more realistic example, the file zach.jpg contains a computer
graphics image:

$1s -1

-rw-r--r-- 1 sam sam 33287 Mar 1 22:40 zach.jpg

The bzip2 utility can reduce the size of the file by only 28 percent because the image
is already in a compressed format:

$ bzip2 -v zach.jpg
zach.jpg: 1.391:1, 5.749 bits/byte, 28.13% saved, 33287 1in, 23922 out.

$1s -1
-rw-r--r-- 1 sam sam 23922 Mar 1 22:40 zach.jpg.bz2

Refer to the bzip2 man page, www.bzip.org, and the Bzip2 mini-HOWTO (see
page 129) for more information.

bunzip2 AND bzcat: DECOMPRESS A FILE

You can use the bunzip2 utility to restore a file that has been compressed with bzip2:

$ bunzip2 letter_e.bz2
$ 1s -1
-rw-rw-r-- 1 sam sam 584000 Mar 1 22:31 Tetter_e

www.bzip.org

COMPRESSING AND ARCHIVING FILES 161

$ bunzip2 zach.jpg.bz2
$ 1s -1
-rw-r--r-- 1 sam sam 33287 Mar 1 22:40 zach.jpg

The bzcat utility displays a file that has been compressed with bzip2. The equivalent
of cat for .bz2 files, bzcat decompresses the compressed data and displays the con-
tents of the decompressed file. Like cat, bzcat does not change the source file. The
pipe in the following example redirects the output of bzcat so that instead of being
displayed on the screen it becomes the input to head, which displays the first two
lines of the file:

$ bzcat letter_e.bz2 | head -2
ceeeceeeceeeEEERERREREREEREREEREREEEEREEREREEREREEREREEREEEREEREREEREREEEE
ceceeceeceececReREEREREERRREEREREERCREERCRECRCRRERCREERCECRRERRRRCRRRECEE

After bzcat is run, the contents of letter_e.bz is unchanged; the file is still stored on
the disk in compressed form.

bzip2recover The bzip2recover utility supports limited data recovery from media errors. Give the
command bzip2recover followed by the name of the compressed, corrupted file
from which you want to try to recover data.

gzip: COMPRESSES A FILE

gunzip and zcat The gzip (GNU zip) utility is older and less efficient than bzip2. Its flags and opera-
tion are very similar to those of bzip2. A file compressed by gzip is marked by a .gz
filename extension. Linux stores manual pages in gzip format to save disk space;
likewise, files you download from the Internet are frequently in gzip format. Use
gzip, gunzip, and zcat just as you would use bzip2, bunzip2, and bzcat, respectively.
Refer to the gzip info page for more information.

compress The compress utility can also compress files, albeit not as well as gzip. This utility
marks a file it has compressed by adding .Z to its name.

gzip versus zip

Do not confuse gzip and gunzip with the zip and unzip utilities. These last two are used to pack
and unpack zip archives containing several files compressed into a single file that has been
imported from or is being exported to a system running Windows. The zip utility constructs a zip
archive, whereas unzip unpacks zip archives. The zip and unzip utilities are compatible with
PKZIP, a Windows program that compresses and archives files.

tar: PACKS AND UNPACKS ARCHIVES

The tar utility performs many functions. Its name is short for tape archive, as its origi-
nal function was to create and read archive and backup tapes. Today it is used to create
a single file (called a tar file, archive, or tarball) from multiple files or directory hierar-
chies and to extract files from a tar file. The cpio utility performs a similar function.

In the following example, the first Is shows the existence and sizes of the files g, b,
and d. Next tar uses the —c (create), —v (verbose), and —f (write to or read from a
file) options to create an archive named all.tar from these files. Each line output dis-
plays the name of the file tar is appending to the archive it is creating.

162 CHAPTER 5 THE LINUX UTILITIES

The tar utility adds overhead when it creates an archive. The next command shows
that the archive file all.tar occupies about 9,700 bytes, whereas the sum of the sizes
of the three files is about 6,000 bytes. This overhead is more appreciable on smaller
files, such as the ones in this example.

$1s -1 gbd

-rw-r--r-- 1 jenny jenny 1302 Aug 20 14:16 g

-rw-r--r-- 1 jenny other 1178 Aug 20 14:16 b

-rw-r--r-- 1 jenny jenny 3783 Aug 20 14:17 d

$ tar -cvf all.tar g b d

9

b

d

$ 1s -1 all.tar

-rw-r--r-- 1 jenny jenny 9728 Aug 20 14:17 all.tar

$ tar -tvf all.tar

-rw-r--r-- jenny/jenny 1302 2007-08-20 14:16 g
-rw-r--r-- jenny/other 1178 2007-08-20 14:16 b
-rw-r--r-- jenny/jenny 3783 2007-08-20 14:17 d

The final command in the preceding example uses the —t option to display a table of
contents for the archive. Use —x instead of —t to extract files from a tar archive. Omit
the —v option if you want tar to do its work silently.?

You can use bzip2, compress, or gzip to compress tar files, making them easier to
store and handle. Many files you download from the Internet will already be in one
of these formats. Files that have been processed by tar and compressed by bzip2 fre-
quently have a filename extension of .tar.bz2 or .tbz. Those processed by tar and
gzip have an extension of .tar.gz or .tz, whereas files processed by tar and compress
use .tar.Z as the extension.

You can unpack a tarred and gzipped file in two steps. (Follow the same procedure if
the file was compressed by bzip2, but use bunzip2 instead of gunzip.) The next exam-
ple shows how to unpack the GNU make utility after it has been downloaded
(ftp.gnu.org/pub/gnu/make/make-3.80.tar.gz):

$ 1s -1 mak=

-rw-rw-r-- 1 sam sam 1211924 Jan 20 11:49 make-3.80.tar.gz
$ gunzip mak:

$ 1s -1 mak=

-rw-rw-r-- 1 sam sam 4823040 Jan 20 11:49 make-3.80.tar

$ tar -xvf mak::

make-3.80/

make-3.80/po/

make-3.80/po/Makefile.in.in

make-3.80/tests/run_make_tests.pl
make-3.80/tests/test_driver.pl

2. Although the original UNIX tar did not use a leading hyphen to indicate an option on the command
line, it now accepts hyphens. The GNU tar described here will accept tar commands with or without a lead-
ing hyphen. This book uses the hyphen for consistency with most other utilities.

COMPRESSING AND ARCHIVING FILES 163

optional

The first command lists the downloaded tarred and gzipped file: make-3.80.tar.gz
(about 1.2 megabytes). The asterisk (3) in the filename matches any characters in any
filenames (page 240), so you end up with a list of files whose names begin with mak;
in this case there is only one. Using an asterisk saves typing and can improve accuracy
with long filenames. The gunzip command decompresses the file and yields make-
3.80.tar (no .gz extension), which is about 4.8 megabytes. The tar command creates
the make-3.80 directory in the working directory and unpacks the files into it.

$ 1s -1d mak=

drwxrwxr-x 8 sam sam 4096 Oct 3 2002 make-3.80
-rw-rw-r-- 1 sam sam 4823040 Jan 20 11:49 make-3.80.tar
$ 1s -1 make-3.80

total 1816

-rw-r--r-- 1 sam sam 24687 Oct 3 2002 ABOUT-NLS
-rw-r--r-- 1 sam sam 1554 Jul 8 2002 AUTHORS
-rw-r--r-- 1 sam sam 18043 Dec 10 1996 COPYING
-rw-r--r-- 1 sam sam 32922 Oct 3 2002 Changelog

-rw-r--r-- 1 sam sam 16520 Jan 21 2000 vmsify.c
-rw-r--r-- sam sam 16409 Aug 9 2002 vpath.c
drwxrwxr-x 5 sam sam 4096 Oct 3 2002 w32

[y

After tar extracts the files from the archive, the working directory contains two files
whose names start with mak: make-3.80.tar and make-3.80. The —d (directory)
option causes Is to display only file and directory names, not the contents of directo-
ries as it normally does. The final Is command shows the files and directories in the
make-3.80 directory. Refer to the tar info page for more information.

tar: the —x option may extract a lot of files

Some tar archives contain many files. To list the files in the archive without unpacking them, run
tar with the -t option and the name of the tar file. In some cases you may want to create a new
directory (mkdir [page 191]), move the tar file into that directory, and expand it there. That way
the unpacked files will not mingle with your existing files, and no confusion will occur. This strat-
egy also makes it easier to delete the extracted files. Some tar files automatically create a new
directory and put the files into it. Refer to the preceding example.

tar: the —x option can overwrite files

The —x option to tar overwrites a file that has the same filename as a file you are extracting. Follow
the suggestion in the preceding caution box to avoid overwriting files.

You can combine the gunzip and tar commands on one command line with a pipe
(1), which redirects the output of gunzip so that it becomes the input to tar:

$ gunzip -c make-3.80.tar.gz | tar -xvf -

The —c option causes gunzip to send its output through the pipe instead of creating a
file. Refer to “Pipes” (page 234) and gzip (page 161) for more information about
how this command line works.

164 CHAPTER 5

THE LINUX UTILITIES

A simpler solution is to use the —z option to tar. This option causes tar to call gunzip
(or gzip when you are creating an archive) directly and simplifies the preceding com-
mand line to

$ tar -xvzf make-3.80.tar.gz

In a similar manner, the —j option calls bzip2 or bunzip2.

LocATING COMMANDS

The whereis and apropos utilities can help you find a command whose name you
have forgotten or whose location you do not know. When multiple copies of a util-
ity or program are present, which tells you which copy you will run. The locate util-
ity searches for files on the local system.

which AND whereis: LOCATE A UTILITY

which

whereis

When you give Linux a command, the shell searches a list of directories for a pro-
gram with that name and runs the first one it finds. This list of directories is called a
search path. For information on how to change the search path, refer to “PATH:
Where the Shell Looks for Programs” on page 302. If you do not change the search
path, the shell searches only a standard set of directories and then stops searching.
Other directories on the system may also contain useful utilities, however.

The which utility locates utilities by displaying the full pathname of the file for the
utility. (Chapter 6 contains more information on pathnames and the structure of the
Linux filesystem.) The local system may include several commands that have the
same name. When you type the name of a command, the shell searches for the com-
mand in your search path and runs the first one it finds. You can find out which
copy of the program the shell will run by using which. In the following example,
which reports the location of the tar command:

$ which tar
/bin/tar

The which utility can be helpful when a command seems to be working in unexpected
ways. By running which, you may discover that you are running a nonstandard version
of a tool or a different one than you expected. (“Important Standard Directories and
Files” on page 194 provides a list of standard locations for executable files.) For exam-
ple, if tar is not working properly and you find that you are running /usr/local/bin/tar
instead of /bin/tar, you might suspect that the local version is broken.

The whereis utility searches for files related to a utility by looking in standard loca-
tions instead of using your search path. For example, you can find the locations for
files related to tar:

$ whereis tar
tar: /bin/tar /usr/include/tar.h /usr/share/man/manl/tar.l.gz

In this example whereis finds three references to tar: the tar utility file, a tar header
file, and the tar man page.

LocaTING COMMANDS 165

which versus whereis

Given the name of a program, which looks through the directories in your search path, in order,
and locates the program. If the search path includes more than one program with the specified
name, which displays the name of only the first one (the one you would run).

The whereis utility looks through a list of standard directories and works independently of your
search path. Use whereis to locate a binary (executable) file, any manual pages, and source code
for a program you specify; whereis displays all the files it finds.

which, whereis, and builtin commands

Both the which and whereis utilities report only the names for commands as they are found on
the disk; they do not report shell builtins (utilities that are built into a shell; see page 243). When
you use whereis to try to find where the echo command (which exists as both a utility program
and a shell builtin) is kept, you get the following result:

$ whereis echo

echo: /bin/echo /usr/share/man/manl/echo.l.gz
The whereis utility does not display the echo builtin. Even the which utility reports the wrong
information:

$ which echo
/bin/echo

Under bash you can use the type builtin (page 445) to determine whether a command is a builtin:

$ type echo
echo is a shell builtin

apropos: SEARCHES FOR A KEYWORD

When you do not know the name of the command you need to carry out a particu-
lar task, you can use apropos with a keyword to search for it. This utility searches
for the keyword in the short description line (the top line) of all man pages and dis-
plays those that contain a match. The man utility, when called with the -k (key-
word) option, gives you the same output as apropos (it is the same command).

The database apropos uses, named whatis, is not on Ubuntu Linux systems when they
are first installed, but is built automatically by cron (page 668) using mandb. If apro-
pos does not produce any output, run the command sudo mandb.

The following example shows the output of apropos when you call it with the who
keyword. The output includes the name of each command, the section of the man-
ual that contains it, and the brief description from the top of the man page. This list
includes the utility that you need (who) and identifies other, related tools that you
might find useful:

$ apropos who

at.allow (5) - determine who can submit jobs via at or batch
at.deny (5) - determine who can submit jobs via at or batch
from (1) - print names of those who have sent mail

w (1) - Show who 1is logged on and what they are doing.
w.procps (1) - Show who is logged on and what they are doing.

who (1) - show who is logged on

166 CHAPTER5 THE LINUX UTILITIES

whatis The whatis utility is similar to apropos but finds only complete word matches for the
name of the utility:

$ whatis who
who (1) - show who is Togged on

slocate: SEARCHES FOR A FILE

The slocate utility searches for files on the local system:

$ slocate motd
/usr/share/app-install/icons/xmotd.xpm
/usr/share/app-install/desktop/motd-editor.desktop
/usr/share/app-install/desktop/xmotd.desktop
/usr/share/base-files/motd.md5sums
/usr/share/base-files/motd

Before you can use slocate the updatedb utility must build or update the slocate data-
base. Typically the database is updated once a day by a cron script (page 668).

If you are not on a network, skip the rest of this chapter

If you are the only user on a system that is not connected to a network, you may want to skip the
rest of this chapter. If you are not on a network but are set up to send and receive email, read
“Email” on page 171.

OBTAINING USER AND SYSTEM INFORMATION

This section covers utilities that provide information about who is using the system,
what those users are doing, and how the system is running.

To find out who is using the local system, you can employ one of several utilities
that vary in the details they provide and the options they support. The oldest utility,
who, produces a list of users who are logged in on the local system, the device each
person is using, and the time each person logged in.

The w and finger utilities show more detail, such as each user’s full name and the
command line each user is running. You can use the finger utility to retrieve infor-
mation about users on remote systems if your computer is attached to a network.
Table 5-1 on page 169 summarizes the output of these utilities.

$ who

sam console Mar 27 05:00
alex pts/4 Mar 27 12:23
alex pts/5 Mar 27 12:33
jenny pts/7 Mar 26 08:45

Figure 5-10 who lists who is logged in

OBTAINING USER AND SYSTEM INFORMATION 167

who: LISTS USERS ON THE SYSTEM

The who utility displays a list of users who are logged in. In Figure 5-10 the first col-
umn that who displays shows that Sam, Alex, and Jenny are logged in. (Alex is
logged in from two locations.) The second column shows the device that each user’s
terminal, workstation, or terminal emulator is connected to. The third column
shows the date and time the user logged in. An optional fourth column shows (in
parentheses) the name of the system that a remote user logged in from; this column
does not appear in Figure 5-10.

The information that who displays is useful when you want to communicate with a
user at your installation. When the user is logged in, you can use write (page 170) to
establish communication immediately. If who does not list the user or if you do not
need to communicate immediately, you can send email to that person (page 171).

If the output of who scrolls off the screen, you can redirect the output through a
pipe (I, page 156) so that it becomes the input to less, which displays the output one
page at a time. You can also use a pipe to redirect the output through grep to look
for a specific name.

If you need to find out which terminal you are using or what time you logged in,
you can use the command who am i:

$ who am i
alex pts/5 Mar 27 12:33

finger: LISTS USERS ON THE SYSTEM

You can use finger to display a list of the users who are logged in on the system. In
addition to usernames, finger supplies each user’s full name along with information
about which device the user’s terminal is connected to, how recently the user typed
something on the keyboard, when the user logged in, and what contact information
is available. If the user has logged in over the network, the name of the remote sys-
tem is shown as the user’s location. For example, in Figure 5-11 jenny and hls are
logged in from the remote system named bravo. The asterisk (%) in front of the
name of Helen’s device (TTY) indicates that she has blocked others from sending
messages directly to her terminal (refer to “mesg: Denies or Accepts Messages” on

page 171).
$ finger
Login Name Tty Idle Login Time Office Office Phone
sam root 1 1:35 May 24 08:38
alex Alex Watson /0 Jun 7 12:46 (:0)
alex Alex Watson /1 19 Jun 7 12:47 (:0)
jenn Jenny Chen /2 2:24 Jun 2 05:33 (bravo.example.com)
hls Helen Simpson /2 2 Jun 2 05:33 (bravo.example.com)

Figure 5-11 finger I: lists who is logged in

168 CHAPTER 5

THE LINUX UTILITIES

.plan and .project

$ finger alex
Login: alex Name: Alex Watson
Directory: /home/alex Shell: /bin/bash
On since Wed Jun 6 12:46 (PDT) on pts/@ from :0
5 minutes 52 seconds idle

On since Wed Jun 6 12:47 (PDT) on pts/1 from bravo
Last login Wed Jun 6 12:47 (PDT) on 1 from bravo
New mail received Wed Jun 6 13:16 2007 (PDT)

Unread since Fri May 25 15:32 2007 (PDT)
Plan:
I will be at a conference in Hawaii all next week. If you need
to see me, contact Jenny Chen, x1693.

Figure 5-12 finger II: lists details about one user

finger can be a security risk

On systems where security is a concern, the system administrator may disable finger. This utility
can reveal information that can help a malicious user break into a system.

You can also use finger to learn more about an individual by specifying the name of
that user on the command line. In Figure 5-12, finger displays detailed information
about the user named Alex. Alex is logged in and actively using one of his terminals
(pts/1); he has not used his other terminal (pts/0) for 5 minutes and 52 seconds.
You also learn from finger that if you want to set up a meeting with Alex, you
should contact Jenny at extension 1693.

Most of the information in Figure 5-12 was collected by finger from system files.
The information shown after the heading Plan:, however, was supplied by Alex. The
finger utility searched for a file named .plan in Alex’s home directory and displayed
its contents.

(Filenames that begin with a period, such as .plan, are not normally listed by Is and
are called hidden filenames [page 188].) You may find it helpful to create a .plan file
for yourself; it can contain any information you choose, such as your schedule,
interests, phone number, or address. In a similar manner, finger displays the contents
of the .project and .pgpkey files in your home directory. If Alex had not been logged
in, finger would have reported only his user information, the last time he logged in,
the last time he read his email, and his plan.

$w

8:20am up 4 days, 2:28, 3 users, Tload average: 0.04, 0.04, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
alex pts/4 :0 5:55am 13:45 0.15s 0.07s w
alex pts/5 10 5:55am 27 2:55 1:01 bash
jenny pts/7 bravo 5:56am 13:44 0.51s 30s vim 3.txt
scott pts/12 bravo 7:17pm 1.00s 0:14s run_bdgt

Figure 5-13 The w utility

OBTAINING USER AND SYSTEM INFORMATION 169

You can also use finger to display a user’s username. For example, on a system with
a user named Helen Simpson, you might know that Helen’s last name is Simpson
but might not guess that her username is hls. The finger utility, which is not case
sensitive, can search for information on Helen using her first or last name. The fol-
lowing commands find the information you seek as well as information on other
users whose names are Helen or Simpson:

$ finger HELEN
Login: hls Name: Helen Simpson.

$ finger simpson
Login: hls Name: Helen Simpson.

See page 370 for information about using finger over a network.

w: LISTS USERS ON THE SYSTEM

The w utility displays a list of the users who are logged in. As discussed in the sec-
tion on who, the information that w displays is useful when you want to communi-
cate with someone at your installation.

The first column in Figure 5-13 shows that Alex, Jenny, and Scott are logged in. The
second column shows the designation of the device that each user’s terminal is con-
nected to. The third column shows the system that a remote user is logged in from.
The fourth column shows the time when each user logged in. The fifth column indi-
cates how long each user has been idle (how much time has elapsed since the user
pressed a key on the keyboard). The next two columns identify how much com-
puter processor time each user has used during this login session and on the task
that is running. The last column shows the command each user is running.

The first line that the w utility displays includes the time of day, the period of time
the computer has been running (in days, hours, and minutes), the number of users
logged in, and the load average (how busy the system is). The three load average
numbers represent the number of jobs waiting to run, averaged over the past 1, 5,
and 15 minutes. Use the uptime utility to display just this line. Table 5-1 compares
the w, who, and finger utilities.

Comparison of w, who, and finger

Information displayed w who finger
Username X X X
Terminal-line identification (tty) X X X
Login day and time X

Login date and time X X

Idle time X X

170 CHAPTER5 THE LINUX UTILITIES

Comparison of w, who, and finger (continued)

Information displayed w who finger
Program the user is executing X

Location the user logged in from X

CPU time used X

Full name (or other information from /etc/passwd) X
User-supplied vanity information X
System uptime and load average X

COMMUNICATING WITH OTHER USERS

The utilities discussed in this section exchange messages and files with other users
either interactively or through email.

write: SENDS A MESSAGE

The write utility sends a message to another user who is logged in. When you and
another user use write to send messages to each other, you establish two-way com-
munication. Initially a write command (Figure 5-14) displays a banner on the other
user’s terminal, saying that you are about to send a message.

The syntax of a write command line is
write username [terminal]

The username is the username of the user you want to communicate with. The ter-
minal is an optional device name that is useful if the user is logged in more than
once. You can display the usernames and device names of all users who are logged
in on the local system by using who, w, or finger.

To establish two-way communication with another user, you and the other user
must each execute write, specifying the other’s username as the username. The write
utility then copies text, line by line, from one keyboard/display to the other
(Figure 5-15). Sometimes it helps to establish a convention, such as typing o (for
“over”) when you are ready for the other person to type and typing oo (for “over
and out”) when you are ready to end the conversation. When you want to stop
communicating with the other user, press CONTROL-D at the beginning of a line. Press-
ing CONTROL-D tells write to quit, displays EOF (end of file) on the other user’s terminal,
and returns you to the shell. The other user must do the same.

$ write alex
Hi Alex, are you there? o

Figure 5-14 The write utility I

EmaiL 171

If the Message from banner appears on your screen and obscures something you are
working on, press CONTROL-L or CONTROL-R to refresh the screen and remove the banner.
Then you can clean up, exit from your work, and respond to the person who is
writing to you. You have to remember who is writing to you, however, because the
banner will no longer appear on the screen.

mesg: DENIES OR ACCEPTS MESSAGES

EmAIL

Give the following command when you do not wish to receive messages from
another user:

$ mesg n

If Alex had given this command before Jenny tried to send him a message, Jenny
would have seen the following message:

$ write alex
Permission denied

You can allow messages again by entering mesg y. Give the command mesg by itself
to display is y (for “yes, messages are allowed”) or is n (for “no, messages are not
allowed”).

Email enables you to communicate with users on the local system and, if the instal-
lation is part of a network, with other users on the network. If you are connected to
the Internet, you can communicate electronically with users around the world.

Email utilities differ from write in that email utilities can send a message when the
recipient is not logged in. These utilities can also send the same message to more
than one user at a time.

Many email programs are available for Linux, including the original character-based
mail program, Mozilla/Thunderbird, pine, mail through emacs, KMail, and evolution.
Another popular graphical email program is sylpheed (sylpheed.good-day.net).

Two programs are available that can make any email program easier to use and
more secure. The procmail program (www.procmail.org) creates and maintains
email servers and mailing lists; preprocesses email by sorting it into appropriate
files and directories; starts various programs depending on the characteristics of

$ write alex
Hi Alex, are you there? o

Message from alex@bravo.example.com on pts/0 at 16:23 ...
Yes Jenny, I'm here. o

Figure 5-15 The write utility II

www.procmail.org

172 CHAPTER S

THE LINUX UTILITIES

Network addresses

incoming email; forwards email; and so on. The GNU Privacy Guard (GPG or
GNUpg, page 995) encrypts and decrypts email and makes it almost impossible for
an unauthorized person to read.

Refer to Chapter 21 for more information on setting email clients and servers.

If your system is part of a LAN, you can generally send email to and receive email
from users on other systems on the LAN by using their usernames. Someone send-
ing Alex email on the Internet would need to specify his domain name (page 1034)
along with his username. Use this address to send email to the author of this book:
mgs@sobell.com.

TUTORIAL: CREATING AND EDITING A FILE WITH vim

vimtutor

Specifying a
terminal

This section explains how to start vim, enter text, move the cursor, correct text, save
the file to the disk, and exit from vim. The tutorial discusses three of the modes of
operation of vim and explains how to switch from one mode to another.

In addition to working with this tutorial, you may want to try vim’s tutor, named
vimtutor: Give its name as a command to run it.

Because vim takes advantage of features that are specific to various kinds of termi-
nals, you must tell it what type of terminal or terminal emulator you are using. On
many systems, and usually when you work on a terminal emulator, your terminal
type is set automatically. If you need to specify your terminal type explicitly, refer to
“Specifying a Terminal” on page 988.

STARTING vim

Start vim with the following command line to create and edit a file named practice:
$ vim practice

When you press RETURN, the command line disappears, and the screen looks similar to
the one shown in Figure 5-16.

The tildes (~) at the left of the screen indicate that the file is empty. They disappear
as you add lines of text to the file. If your screen looks like a distorted version of the
one shown in Figure 5-16, your terminal type is probably not set correctly.

The vi command runs vim

On Ubuntu Linux systems the command vi runs vim. See “The compatible Parameter” on
page 179 for information on running vim in vi-compatible mode.

If you start vim with a terminal type that is not in the terminfo database, vim dis-
plays an error message and the terminal type defaults to ansi, which works on many
terminals. In the following example, the user mistyped vt100 and set the terminal
type to vg100:

TUTORIAL: CREATING AND EDITING A FILE WITH vim 173

"practice” [New File) 0,0-1 All

Figure 5-16 Starting vim

E558: Terminal entry not found in terminfo
'vgl00' not known. Available builtin terminals are:
builtin_riscos
builtin_amiga
builtin_beos-ansi
builtin_ansi
builtin_pcansi
builtin_win32
builtin_vt320
builtin_vt52
builtin_xterm
builtin_debug
buiTtin_dumb
defaulting to 'ansi'

To reset the terminal type, press ESCAPE and then give the following command to exit
from vim and get the shell prompt back:

:q!

When you enter the colon (:), vim moves the cursor to the bottom line of the screen.
The characters q! tell vim to quit without saving your work. (You will not ordinarily
exit from vim this way because you typically want to save your work.) You must
press RETURN after you give this command. Once you get the shell prompt back, refer
to “Specifying a Terminal” on page 988, and then start vim again.

If you start this editor without a filename, vim assumes that you are a novice and
tells you how to get started (Figure 5-17, next page).

The practice file is new so it does not contain any text. The vim editor displays a
message similar to the one shown in Figure 5-16 on the status (bottom) line of the
terminal to indicate that you are creating and editing a new file. When you edit an
existing file, vim displays the first few lines of the file and gives status information
about the file on the status line.

174 CHAPTER5 THE LINUX UTILITIES

VIM - Vi IMproved

version 6.2.457
by Bram Moolenaar et al.
Vim is open source and freely distributable

Help poor children in Uganda!
type :help iccf<Enters for information

type :q<Enters to exit
type :help<Enter: or <Fl1> for on-line help
type :help versionB<Enters for version info

Figure 5-17 Starting vim without a filename

COMMAND AND INPUT MODES

Two of vim’s modes of operation are Command mode (also called Normal mode)
and Input mode (Figure 5-18). While vim is in Command mode, you can give vim
commands. For example, you can delete text or exit from vim. You can also com-
mand vim to enter Input mode. In Input mode, vim accepts anything you enter as
text and displays it on the screen. Press ESCAPE to return vim to Command mode. By
default the vim editor keeps you informed about which mode it is in: It displays
INSERT at the lower-left corner of the screen while it is in Insert mode.

The following command causes vim to display line numbers next to the text you are
editing:

:set number RETURN

Colon (:)
Last

mode
RETURN

Command
mode

Insert,
Append,
Open,
Replace,
Change

ESCAPE

Figure 5-18 Modes in vim

TUTORIAL: CREATING AND EDITING A FILE WITH vim 175

Last Line mode The colon (:) in the preceding command puts vim into another mode, Last Line mode.
While in this mode, vim keeps the cursor on the bottom line of the screen. When you
finish entering the command by pressing RETURN, vim restores the cursor to its place in
the text. Give the command :set nonumber RETURN to turn off line numbers.

vimiscase When you give vim a command, remember that the editor is case sensitive. In other

sensitive words, vim interprets the same letter as two different commands, depending on

whether you enter an uppercase or lowercase character. Beware of the CAPSLOCK (SHIFT-

Lock) key. If you set this key to enter uppercase text while you are in Input mode and

then exit to Command mode, vim interprets your commands as uppercase letters. It

can be confusing when this happens because vim does not appear to be executing the
commands you are entering.

ENTERING TEXT

i/a (Input mode) When you start vim, you must put it in Input mode before you can enter text. To put
vim in Input mode, press the i key (insert before the cursor) or the a key (append
after the cursor).

If you are not sure whether vim is currently in Input mode, press the ESCAPE key; vim
returns to Command mode if it was in Input mode or beeps, flashes, or does noth-
ing if it is already in Command mode. You can put vim back in Input mode by press-
ing the i or a key again.

While vim is in Input mode, you can enter text by typing on the keyboard. If the text
does not appear on the screen as you type, vim is not in Input mode.

To continue with this tutorial, enter the sample paragraph shown in Figure 5-19,
pressing the RETURN key at the end of each line. If you do not press RETURN before the
cursor reaches the right side of the screen or window, vim will wrap the text so that
it appears to start a new line. Physical lines will not correspond to programmatic
(logical) lines in this situation, so editing will be more difficult. While you are using
vim, you can always correct any typing mistakes you make. If you notice a mistake
on the line you are entering, you can correct it before you continue (page 176). You

nf you are not sure whether vim is in Input mode, press the ESCAPE key;
vim returns to Command mode if it was in Input mode or beeps, flashes,
lor does nothing if it is already in Command mode. You can put vim back
in Input mode by pressing the i or a key again.

1,1 All

Figure 5-19 Entering text with vim

176 CHAPTER5 THE LINUX UTILITIES

can correct other mistakes later. When you finish entering the paragraph, press
ESCAPE to return vim to Command mode.

GETTING HELP

To get help while you are using vim, give the command :help [feature] followed by
RETURN (you must be in Command mode when you give this command). The colon
moves the cursor to the last line of the screen. If you type :help, vim displays an
introduction to vim Help (Figure 5-20). Each dark band near the bottom of the
screen names the file that is displayed above it. (Each area of the screen that dis-
plays a file, such as the two areas shown in Figure 5-20, is a vim “window.”) The
help.txt file occupies most of the screen (the upper window) in Figure 5-20. The file
that is being edited (practice) occupies a few lines in the lower portion of the screen
(the lower window).

Read through the introduction to Help by scrolling the text as you read. Press j or
the DowN ARROW key to move the cursor down one line at a time; press CONTROLD or
CONTROL-U to scroll the cursor down or up half a window at a time. Give the command
:q to close the Help window.

You can get help with the insert commands by giving the command :help insert
while vim is in Command mode (Figure 5-21).

CORRECTING TEXT AS YOU INSERT IT

The keys that back up and correct a shell command line serve the same functions
when vim is in Input mode. These keys include the erase, line kill, and word kill keys
(usually CONTROLH, CONTROL-U, and CONTROLW, respectively). Although vim may not
remove deleted text from the screen as you back up over it using one of these keys,
the editor does remove it when you type over the text or press RETURN.

- STRET: For V G.2. Last change: 2004 Jan 08
VIM - main help file

Move around: Use the curser keys, or "h"™ to go left, h 1
“i* to go down, “k" to go up, "1" to go right. i
Close this window: Use ":q<Enters".
Get out of Vim: Use “:gal<Enter>" (careful, all changes are lost!).

[Jump to a subject: Position the cursor an a tag between r and hit CIR
With the mouse: ":set mouse=a” to enable the mouse (in xterm or GUI).
Double-click the left mouse button on a tag between
jump back: Type CTRL-T or CTRL-O (repeat to go further back).

Get specific help: It is possible to go directly to whatever you want help
on, by giving an argument to the “:help” command

It is possible to further specify the context:
*he

WHAT FREPEND

Normal mode commands (nothing) thelp x
If you are not sure whether vim is in Input mode, press the ESCAPE key;
vim returns to Command mode if it was in Input mode or beeps, flashes,
lor does nothing if it is already in Command mode. You can put vim back

in InEut mode bi ircssiui the i or a kci' nia:'m.

Figure 5-20 The main vim Help screen

TUTORIAL: CREATING AND EDITING A FILE WITH vim 177

X (Delete character)
dw (Delete word)
dd (Delete line)

u (Undo)

:redo (Redo)

; or i [
i Insert text before the cursor [count]
When using CTRL-0 in Insert mode the count
is not supported.

I Insert text before the first nen-blank in the line
count] times.
gl
2L Insert text in column 1 [count] times.
gi
i Insert text in the same pasition as where Insert mode
was stopped last time in the current buffer.
This uses the mark. It's different from " *i"

when the mark is past the end of the line.

The position is corrected for inserted/deleted lines,
but NOT for inserted/deleted characters.

not in Vi

If you are not sure whether vim is in Input mode, press the ESCAPE key;
vim returns to Command mode if it was in Input mode or beeps, flashes,
lor does nothing if it is already in Command mode. You can put vim back

in InEut mode bi ircssiui the i or a kci' nia:'m.

Figure 5-21 Help with insert commands

MOVING THE CURSOR

You need to be able to move the cursor on the screen so that you can delete, insert,
and correct text. While vim is in Command mode, you can use the RETURN key, the
SPACE bar, and the ARROW keys to move the cursor. If you prefer to keep your hand
closer to the center of the keyboard, if your terminal does not have ARROW keys, or if
the emulator you are using does not support them, you can use the h, j, k, and 1
(lowercase “1”) keys to move the cursor left, down, up, and right, respectively.

DELETING TEXT

You can delete a single character by moving the cursor until it is over the character
you want to delete and then giving the command x. You can delete a word by posi-
tioning the cursor on the first letter of the word and then giving the command dw
(Delete word). You can delete a line of text by moving the cursor until it is any-
where on the line and then giving the command dd.

UNDOING MISTAKES

If you delete a character, line, or word by mistake or give any command you want
to reverse, give the command u (Undo) immediately after the command you want to
undo. The vim editor will restore the text to the way it was before you gave the last
command. If you give the u command again, vim will undo the command you gave
before the one it just undid. You can use this technique to back up over many of
your actions. With the compatible parameter (page 179) set, however, vim can undo
only the most recent change.

If you undo a command you did not mean to undo, give a Redo command: CONTROL-R
or :redo (followed by a RETURN). The vim editor will redo the undone command. As
with the Undo command, you can give the Redo command many times in a row.

178 CHAPTER S

THE LINUX UTILITIES

i (Insert)
a (Append)

0/0 (Open)

ENTERING ADDITIONAL TEXT

When you want to insert new text within existing text, move the cursor so it is on
the character that follows the new text you plan to enter. Then give the i (Insert)
command to put vim in Input mode, enter the new text, and press ESCAPE to return vim
to Command mode. Alternatively, you can position the cursor on the character that
precedes the new text and use the a (Append) command.

To enter one or more lines, position the cursor on the line above where you want
the new text to go. Give the command o (Open). The vim editor opens a blank line,
puts the cursor on it, and goes into Input mode. Enter the new text, ending each line
with a RETURN. When you are finished entering text, press ESCAPE to return vim to Com-
mand mode. The O command works in the same way o works, except that it opens
a blank line above the line the cursor is on.

CORRECTING TEXT

To correct text, use dd, dw, or x to remove the incorrect text. Then use i, a, 0, or O
to insert the correct text.

For example, to change the word pressing to hitting in Figure 5-19 on page 175,
you might use the ARROW keys to move the cursor until it is on top of the p in press-
ing. Then give the command dw to delete the word pressing. Put vim in Input mode
by giving an i command, enter the word hitting followed by a SPACE, and press ESCAPE.
The word is changed and vim is in Command mode, waiting for another command.
A shorthand for the two commands dw followed by the i command is cw (Change
word). The command cw puts vim into Input mode.

Page breaks for the printer

CONTROL-L tells the printer to skip to the top of the next page. You can enter this character anywhere
in a document by pressing CONTROL-L while you are in Input mode. If AL does not appear, press
CONTROL-V before CONTROL-L.

ENDING THE EDITING SESSION

While you are editing, vim keeps the edited text in an area named the Work buffer.
When you finish editing, you must write out the contents of the Work buffer to a
disk file so that the edited text is saved and available when you next want it.

Make sure that vim is in Command mode, and then use the ZZ command (you must
use uppercase Zs) to write your newly entered text to the disk and end the editing
session. After you give the ZZ command, vim returns control to the shell. You can
exit with :q! if you do not want to save your work.

Do not confuse Zz with CONTROL-Z

When you exit from vim with ZZ, make sure that you type ZZ and not CONTROL-Z (typically the sus-
pend key). When you press CONTROL-Z, vim disappears from your screen, almost as though you
had exited from it. In fact, vim will continue running in the background with your work unsaved.
Refer to “Job Control” on page 290. If you try to start editing the same file with a new vim com-
mand, vim displays a message about a swap file.

CHAPTER SUMMARY 179

THE compatible PARAMETER

The compatible parameter makes vim more compatible with vi. By default this
parameter is not set. From the command line use the —C option to set the compati-
ble parameter and use the -N option to unset it. To get started with vim you can
ignore this parameter.

Setting the compatible parameter changes many aspects of how vim works. For
example, when the compatible parameter is set, the Undo command (page 177) can
undo only your most recent change; in contrast, with the compatible parameter
unset, you can call Undo repeatedly to undo many changes. To obtain more details
on the compatible parameter, give the command :help compatible ReTURN. To display
a complete list of vim’s differences from the original vi, use :help vi-diff RETURN. See
page 176 for a discussion of the help command.

CHAPTER SUMMARY

The utilities introduced in this chapter are a small but powerful subset of the many
utilities available on an Ubuntu Linux system. Because you will use them frequently
and because they are integral to the following chapters, it is important that you
become comfortable using them.

The utilities listed in Table 5-2 manipulate, display, compare, and print files.

File utilities
Utility Function
cp Copies one or more files (page 149)
diff Displays the differences between two files (page 154)
file Displays information about the contents of a file (page 155)
grep Searches file(s) for a string (page 151)
head Displays the lines at the beginning of a file (page 152)
Ipq Displays a list of jobs in the print queue (page 151)
Ipr Places file(s) in the print queue (page 151)
Iprm Removes a job from the print queue (page 151)
mv Renames a file or moves file(s) to another directory (page 150)
sort Puts a file in order by lines (page 153)
tail Displays the lines at the end of a file (page 152)

uniq Displays the contents of a file, skipping successive duplicate lines (page 154)

180 CHAPTER5 THE LINUX UTILITIES

To reduce the amount of disk space a file occupies, you can compress it with the bzip2
utility. Compression works especially well on files that contain patterns, as do most
text files, but reduces the size of almost all files. The inverse of bzip2—bunzip2—
restores a file to its original, decompressed form. Table 5-3 lists utilities that compress
and decompress files. The bzip2 utility is the most efficient of these.

(De)compression utilities

Utility Function

bunzip2 Returns a file compressed with bzip2 to its original size and format (page 160)

bzcat Displays a file compressed with bzip2 (page 160)

bzip2 Compresses a file (page 160)

compress Compresses a file (not as well as gzip) (page 161)

gunzip Returns a file compressed with gzip or compress to its original size and for-
mat (page 161)

gzip Compresses a file (page 161)

zcat Displays a file compressed with gzip (page 161)

An archive is a file, frequently compressed, that contains a group of files. The tar
utility (Table 5-4) packs and unpacks archives. The filename extensions .tar.bz2,
.tar.gz, and .tgz identify compressed tar archive files and are often seen on software
packages obtained over the Internet.

Archive utility
Utility Function

tar Creates or extracts files from an archive file (page 161)

The utilities listed in Table 5-5 determine the location of a utility on the local sys-
tem. For example, they can display the pathname of a utility or a list of C++ compil-
ers available on the local system.

Location utilities

Utility Function

apropos Searches the man page one-line descriptions for a keyword (page 165)
locate Searches for files on the local system (page 166)

whereis Displays the full pathnames of a utility, source code, or man page (page 164)
which Displays the full pathname of a command you can run (page 164)

Table 5-6 lists utilities that display information about other users. You can easily
learn a user’s full name, the user’s login status, the login shell of the user, and other
items of information maintained by the system.

EXERCISES 181

User and system information utilities

Utility Function

finger Displays detailed information about users, including their full names (page 167)
hostname Displays the name of the local system (page 149)

w Displays detailed information about users who are logged in (page 169)
who Displays information about users who are logged in (page 167)

The utilities shown in Table 5-7 can help you stay in touch with other users on the
local network.

User communication utilities

Utility Function
mesg Permits or denies messages sent by write (page 171)
write Sends a message to another user who is logged in (page 170)

Table 5-8 lists miscellaneous utilities.

Miscellaneous utilities

Utility Function

date Displays the current date and time (page 157)

echo Copies its arguments (page 1023) to the screen (page 157)
EXERCISES

1. Which commands can you use to determine who is logged in on a specific
terminal?

2. How can you keep other users from using write to communicate with you?
Why would you want to?

3. What happens when you give the following commands if the file named
done already exists?

$ cp to_do done
$ mv to_do done

4. How can you find out which utilities are available on your system for edit-
ing files? Which utilities are available for editing on your system?

5. How can you find the phone number for Ace Electronics in a file named phone
that contains a list of names and phone numbers? Which command can you
use to display the entire file in alphabetical order? How can you remove adja-
cent duplicate lines from the file? How can you remove all duplicates?

182 CHAPTER5 THE LINUX UTILITIES

6. What happens when you use diff to compare two binary files that are not
identical? (You can use gzip to create the binary files.) Explain why the diff
output for binary files is different from the diff output for ASCII files.

7. Create a .plan file in your home directory. Does finger display the contents
of your .plan file?

8. What is the result of giving the which utility the name of a command that
resides in a directory that is n#of in your search path?

9. Are any of the utilities discussed in this chapter located in more than one
directory on your system? If so, which ones?

10. Experiment by calling the file utility with the names of files in /usr/bin.
How many different types of files are there?

11. Which command can you use to look at the first few lines of a file named
status.report? Which command can you use to look at the end of the file?

ADVANCED EXERCISES

12. Re-create the colors.1 and colors.2 files used in Figure 5-8 on page 155. Test your
files by running diff —u on them. Do you get the same results as in the figure?

13. Try giving these two commands:

$ echo cat
$ cat echo

Explain the differences between them.

14. Repeat exercise 5 using the file phone.gz, a compressed version of the list
of names and phone numbers. Consider more than one approach to
answer each question, and explain how you made your choices.

15. Find existing files or create files that
a. gzip compresses by more than 80 percent.
b. gzip compresses by less than 10 percent.
c. Get larger when compressed with gzip.

d. Use Is -1 to determine the sizes of the files in question. Can you charac-
terize the files in a, b, and ¢?

16. Older email programs were not able to handle binary files. Suppose that
you are emailing a file that has been compressed with gzip, which produces
a binary file, and the recipient is using an old email program. Refer to the
man page on uuencode, which converts a binary file to ASCII. Learn about
the utility and how to use it.

a. Convert a compressed file to ASCII using uuencode. Is the encoded file
larger or smaller than the compressed file? Explain. (If uuencode is not
on the local system, you can install it using aptitude [page 585]; it is part
of the sharutils package.)

b. Would it ever make sense to use uuencode on a file before compressing
it? Explain.

IN THIS CHAPTER

The Hierarchical Filesystem 184
Directory Files and Ordinary

Files «oviiiiiiiiit 184
The Working Directory.......... 188
Your Home Directory........... 188
Pathnames 189
Relative Pathnames 190
Working with Directories 196
Access Permissions 199
ACLs: Access Control Lists 203
Hard Links 210
Symbolic Links 212

THE LINUX FILESYSTEM

A filesystem is a set of data structures (page 1032) that usually
resides on part of a disk and that holds directories of files. File-
systems store user and system data that are the basis of users’
work on the system and the system’s existence. This chapter
discusses the organization and terminology of the Linux file-
system, defines ordinary and directory files, and explains the
rules for naming them. It also shows how to create and delete
directories, move through the filesystem, and use absolute and
relative pathnames to access files in various directories. It
includes a discussion of important files and directories as well
as file access permissions and Access Control Lists (ACLs),
which allow you to share selected files with other users. It con-
cludes with a discussion of hard and symbolic links, which can
make a single file appear in more than one directory.

In addition to reading this chapter, you may want to refer to the
df info page and to the fsck, mkfs, and tune2fs man pages for
more information on filesystems.

183

184 CHAPTER 6 THE LINUX FILESYSTEM

Grandparent

| Aunt ‘ | Mom ‘ | Uncle ‘

| Sister ‘ | Brother ‘ | Self ‘
| Daughter 1 ‘ | Daughter 2 ‘

| Grandchild 1 ‘ | Grandchild 2 ‘

Figure 6-1 A family tree

THE HIERARCHICAL FILESYSTEM

Family tree

Directory tree

Subdirectories

A bierarchical structure (page 1040) frequently takes the shape of a pyramid. One
example of this type of structure is found by tracing a family’s lineage: A couple has
a child, who may in turn have several children, each of whom may have more chil-
dren. This hierarchical structure is called a family tree (Figure 6-1).

Like the family tree it resembles, the Linux filesystem is called a tree. It consists of a
set of connected files. This structure allows you to organize files so you can easily
find any particular one. On a standard Linux system, each user starts with one
directory, to which the user can add subdirectories to any desired level. By creating
multiple levels of subdirectories, a user can expand the structure as needed.

Typically each subdirectory is dedicated to a single subject, such as a person,
project, or event. The subject dictates whether a subdirectory should be subdivided
further. For example, Figure 6-2 shows a secretary’s subdirectory named corre-
spond. This directory contains three subdirectories: business, memos, and personal.
The business directory contains files that store each letter the secretary types. If you
expect many letters to go to one client, as is the case with milk_co, you can dedicate
a subdirectory to that client.

One major strength of the Linux filesystem is its ability to adapt to users’ needs.
You can take advantage of this strength by strategically organizing your files so they
are most convenient and useful for you.

DIRECTORY FILES AND ORDINARY FILES

Like a family tree, the tree representing the filesystem is usually pictured upside
down, with its root at the top. Figures 6-2 and 6-3 show that the tree “grows”

DIRECTORY FILES AND ORDINARY FILES 185

correspond

personal

cheese_co

‘ letter_1 ‘ ‘ letter_2 ‘

Figure 6-2 A secretary’s directories

downward from the root, with paths connecting the root to each of the other files. At
the end of each path is either an ordinary file or a directory file. Special files, which
can also be at the ends of paths, are described on page 567. Ordinary files, or sim-
ply files, appear at the ends of paths that cannot support other paths. Directory
files, also referred to as directories or folders, are the points that other paths can
branch off from. (Figures 6-2 and 6-3 show some empty directories.) When you
refer to the tree, up is toward the root and down is away from the root. Directories
directly connected by a path are called parents (closer to the root) and children
(farther from the root). A pathname is a series of names that trace a path along
branches from one file to another. More information about pathnames appears on
page 189.

FILENAMES

Every file has a filename. The maximum length of a filename varies with the type of
filesystem; Linux supports several types of filesystems. Although most of today’s filesys-
tems allow you to create files with names up to 255 characters long, some filesystems

‘ Ordinary File ‘ ‘ Ordinary File ‘

Ordinary File

‘ Ordinary File ‘ ‘ Ordinary File ‘

Figure 6-3 Directories and ordinary files

186 CHAPTER 6 THE LINUX FILESYSTEM

restrict you to shorter names. While you can use almost any character in a filename, you
will avoid confusion if you choose characters from the following list:

® Uppercase letters (A-Z)
® Lowercase letters (a—z)
e Numbers (0-9)

e Underscore (_)

e Period (.)

e Comma (,)

/ orroot The root directory is always named / (slash) and referred to by this single character.
No other file can use this name or have a / in its name. However, in a pathname,
which is a string of filenames including directory names, the slash separates file-
names (page 189).

Like the children of one parent, no two files in the same directory can have the same
name. (Parents give their children different names because it makes good sense, but
Linux requires it.) Files in different directories, like the children of different parents,
can have the same name.

The filenames you choose should mean something. Too often a directory is filled
with important files with such unhelpful names as hold1, wombat, and junk, not to
mention foo and foobar. Such names are poor choices because they do not help you
recall what you stored in a file. The following filenames conform to the suggested
syntax and convey information about the contents of the file:

e correspond
® january

¢ davis

® reports

¢ 2001

® acct_payable

Filename length When you share your files with users on other systems, you may need to make long
filenames differ within the first few characters. Systems running DOS or older ver-
sions of Windows have an 8-character filename body length and a 3-character file-
name extension length limit. Some UNIX systems have a 14-character limit and
older Macintosh systems have a 31-character limit. If you keep the filenames short,
they are easy to type; later you can add extensions to them without exceeding the
shorter limits imposed by some filesystems. The disadvantage of short filenames is
that they are typically less descriptive than long filenames. See stat on page 526 for a
way to determine the maximum length of a filename on the local system.

DIRECTORY FILES AND ORDINARY FILES 187

Case sensitivity

Long filenames enable you to assign descriptive names to files. To help you select
among files without typing entire filenames, shells support filename completion. For
more information about this feature, see the “Filename completion” tip on page 149.

You can use uppercase and/or lowercase letters within filenames. Linux is case sen-
sitive, so files named JANUARY, January, and january represent three distinct files.

Do not use SPACEs within filenames

Although you can use SPACES within filenames, it is a poor idea. Because a SPACE is a special char-
acter, you must quote it on a command line. Quoting a character on a command line can be diffi-
cult for a novice user and cumbersome for an experienced user. Use periods or underscores
instead of SPACES: joe.05.04.26, new_stuff.

If you are working with a filename that includes a SPACE, such as a file from another operating sys-
tem, you must quote the SPACE on the command line by preceding it with a backslash or by placing
quotation marks on either side of the filename. The two following commands send the file named
my file to the printer.

$ 1pr my\ file
$ 1pr "my file"

FILENAME EXTENSIONS

A filename extension is the part of the filename following an embedded period. In
the filenames listed in Table 6-1, filename extensions help describe the contents of
the file. Some programs, such as the C programming language compiler, default to
specific filename extensions; in most cases, however, filename extensions are
optional. Use extensions freely to make filenames easy to understand. If you like,
you can use several periods within the same filename—for example, notes.4.10.01
or files.tar.gz.

Filename extensions

Filename with extension Meaning of extension

compute.c A C programming language source file

compute.o The object code for the program

compute The same program as an executable file
memo.0410.txt A text file

memo.pdf A PDF file; view with xpdf under a GUI

memo.ps A PostScript file; view with gs under a GUI
memo.Z A file compressed with compress (page 161); use

uncompress or gunzip (page 161) to decompress

memo.tgz or memo.tar.gz Atar (page 161) archive of files compressed with gzip (page 161)

188 CHAPTER 6 THE LINUX FILESYSTEM

Filename extensions (continued)

memo.gz A file compressed with gzip (page 161); view with zcat or
decompress with gunzip (both on page 161)

memo.hz2 A file compressed with bzip2 (page 160); view with bzcat or
decompress with bunzip2 (both on page 160)

memo.html A file meant to be viewed using a Web browser, such as Firefox

photo.gif, photo.jpg, A file containing graphical information, such as a picture

photo.jpeg, photo.bmp,
photo.tif, or photo.tiff

HIDDEN FILENAMES

A filename that begins with a period is called a hidden filename (or a hidden file or
sometimes an invisible file) because Is does not normally display it. The command
Is —a displays all filenames, even hidden ones. Names of startup files (page 188)
usually begin with a period so that they are hidden and do not clutter a directory
listing. The .plan file (page 168) is also hidden. Two special hidden entries—a sin-
gle and double period (. and ..)—appear in every directory (page 193).

THE WORKING DIRECTORY

pwd While you are logged in on a character-based interface to a Linux system, you are
always associated with a directory. The directory you are associated with is called
the working directory or current directory. Sometimes this association is referred to
in a physical sense: “You are in (or working in) the jenny directory.” The pwd (print
working directory) utility displays the pathname of the working directory.

YOUR HOME DIRECTORY

When you first log in on a Linux system or start a terminal emulator window, your
working directory is your home directory. To display the pathname of your home
directory, use pwd just after you log in (Figure 6-4).

When used without any arguments, the Is utility displays a list of the files in the
working directory. Because your home directory has been the only working directory
you have used so far, Is has always displayed a list of files in your home directory.
(All the files you have created up to this point were created in your home directory.)

STARTUP FILES

Startup files, which appear in your home directory, give the shell and other pro-
grams information about you and your preferences. Frequently one of these files
tells the shell what kind of terminal you are using (page 988) and executes the stty
(set terminal) utility to establish the erase (page 137) and line kill (page 138) keys.

Either you or the system administrator can put a shell startup file containing shell
commands in your home directory. The shell executes the commands in this file
each time you log in. Because the startup files have hidden filenames, you must use

PATHNAMES 189

login: alex

Password:

Last login: Wed Oct 20 11:14:21 from bravo
$ pwd

/home/alex

Figure 6-4 Logging in and displaying the pathname of your home directory

the Is —a command to see whether one is in your home directory. A GUI has many
startup files. Usually you do not need to work with these files directly but can con-
trol startup sequences using icons on the desktop. See page 277 for more informa-
tion about startup files.

PATHNAMES

This section discusses absolute and relative pathnames and explains how to use
them to your advantage.

ABSOLUTE PATHNAMES

Every file has a pathname. Figure 6-5 shows the pathnames of directories and ordi-
nary files in part of a filesystem hierarchy. An absolute pathname always starts with
a slash (/), the name of the root directory. You can then build the absolute pathname
of a file by tracing a path from the root directory through all the intermediate direc-
tories to the file. String all the filenames in the path together, separating each from
the next with a slash (/) and preceding the entire group of filenames with a slash (/).
This path of filenames is called an absolute pathname because it locates a file abso-
lutely by tracing a path from the root directory to the file. The part of a pathname
following the final slash is called a simple filename, filename, or basename.

/home/hls/notes

/home/hls/bin/lo
)/— g

‘ report l ‘ log l

Figure 6-5 Absolute pathnames

190 CHAPTER 6 THE LINUX FILESYSTEM

~ (TILDE) IN PATHNAMES

In another form of absolute pathname, the shell expands the characters ~/ (a tilde
followed by a slash) at the start of a pathname into the pathname of your home
directory. Using this shortcut, you can display your .bashrc startup file (page 277)
with the following command, no matter which directory is your working directory:

$ less ~/.bashrc

A tilde quickly references paths that start with your or someone else’s home directory.
The shell expands a tilde followed by a username at the beginning of a pathname into
the pathname of that user’s home directory. For example, assuming he has permission
to do so, Alex can examine Scott’s .bashrc file with the following command:

$ less ~scott/.bashrc

Refer to “Tilde Expansion” on page 341 for more information.

RELATIVE PATHNAMES

A relative pathname traces a path from the working directory to a file. The path-
name is relative to the working directory. Any pathname that does not begin with
the root directory (/) or a tilde (~) is a relative pathname. Like absolute pathnames,
relative pathnames can trace a path through many directories. The simplest relative
pathname is a simple filename, which identifies a file in the working directory. The
examples in the next sections use absolute and relative pathnames.

When using a relative pathname, know which directory is the working directory

The location of the file that you are accessing with a relative pathname is dependent on (is relative to)
the working directory. Always make sure you know which directory is the working directory before
you use a relative pathname. Use pwd to verify the directory. If you are using mkdir and you are not
where you think you are in the file hierarchy, the new directory will end up in an unexpected location.

It does not matter which directory is the working directory when you use an absolute pathname.

SIGNIFICANCE OF THE WORKING DIRECTORY

To access any file in the working directory, you need only a simple filename. To
access a file in another directory, you must use a pathname. Typing a long pathname
is tedious and increases the chance of making a mistake. This possibility is less likely
under a GUI, where you click filenames or icons. You can choose a working direc-
tory for any particular task to reduce the need for long pathnames. Your choice of a
working directory does not allow you to do anything you could not do
otherwise—it just makes some operations easier.

Refer to Figure 6-6 as you read this paragraph. Files that are children of the work-
ing directory can be referenced by simple filenames. Grandchildren of the working
directory can be referenced by short relative pathnames: two filenames separated by
a slash. When you manipulate files in a large directory structure, using short relative
pathnames can save you time and aggravation. If you choose a working directory
that contains the files used most often for a particular task, you need to use fewer
long, cumbersome pathnames.

DIRECTORY COMMANDS 191

working directory = .

notes

‘ report ‘ ‘ log l

Figure 6-6 Relative pathnames

DIRECTORY COMMANDS

This section discusses how to create directories (mkdir), switch between directories
(cd), remove directories (rmdir), use pathnames to make your work easier, and move
and copy files and directories between directories.

mkdir: CREATES A DIRECTORY

The mkdir utility creates a directory. The argument (page 1023) to mkdir becomes the
pathname of the new directory. The following examples develop the directory struc-
ture shown in Figure 6-7. In the figure, the directories that are added appear in a
lighter shade than the others and are connected by dashes.

names ‘ ‘ temp ‘ literature

promo

Figure 6-7 The file structure developed in the examples

192 CHAPTER 6 THE LINUX FILESYSTEM

$ pwd

/home/alex

$ 1s

demo names temp
$ mkdir literature

$ 1s
demo Tliterature names temp
$ 1s -F

demo literature/ names temp
$ 1s literature

$

Figure 6-8 The mkdir utility

In Figure 6-8, pwd shows that Alex is working in his home directory
(/home/alex) and Is shows the names of the files in his home directory: demo,
names, and temp. Using mkdir, Alex creates a directory named literature as a child
of his home directory. He uses a relative pathname (a simple filename) because
he wants the literature directory to be a child of the working directory. Of
course, Alex could have used an absolute pathname to create the same directory:
mkdir /home/alex/literature.

The second Is in Figure 6-8 verifies the presence of the new directory. The —F option
to Is displays a slash after the name of each directory and an asterisk after each exe-
cutable file (shell script, utility, or application). When you call it with an argument
that is the name of a directory, Is lists the contents of that directory. The final Is does
not display anything because there are no files in the literature directory.

The following commands show two ways to create the promo directory as a child of
the newly created literature directory. The first way checks that /home/alex is the
working directory and uses a relative pathname:

$ pwd
/home/aTlex
$ mkdir Titerature/promo

The second way uses an absolute pathname:
$ mkdir /home/alex/11iterature/promo

Use the —p (parents) option to mkdir to create both the literature and promo directo-
ries with one command:

$ pwd

/home/alex

$ 1s

demo names temp

$ mkdir -p literature/promo

or

$ mkdir -p /home/alex/11iterature/promo

DIRECTORY COMMANDS 193

$ cd /home/alex/11iterature
$ pwd
/home/alex/11iterature

$ cd

$ pwd

/home/alex

$ cd Tliterature

$ pwd
/home/alex/11iterature

Figure 6-9 cd changes your working directory

cd: CHANGES TO ANOTHER WORKING DIRECTORY

The cd (change directory) utility makes another directory the working directory but
does not change the contents of the working directory. Figure 6-9 shows two ways
to make the /home/alex/literature directory the working directory, as verified by
pwd. First Alex uses cd with an absolute pathname to make literature his working
directory—it does not matter which is your working directory when you give a
command with an absolute pathname.

A pwd command confirms the change made by Alex. When used without an argu-
ment, cd makes your home directory the working directory, as it was when you
logged in. The second cd command in Figure 6-9 does not have an argument so it
makes Alex’s home directory the working directory. Finally, knowing that he is
working in his home directory, Alex uses a simple filename to make the literature
directory his working directory (cd literature) and confirms the change with pwd.

The working directory versus your home directory

The working directory is not the same as your home directory. Your home directory remains the
same for the duration of your session and usually from session to session. Immediately after you
log in, you are always working in the same directory: your home directory.

Unlike your home directory, the working directory can change as often as you like. You have no
set working directory, which explains why some people refer to it as the current directory. When
you log in and until you change directories by using cd, your home directory is your working
directory. If you were to change directories to Scott’s home directory, then Scott’s home directory
would be your working directory.

THE . AND .. DIRECTORY ENTRIES

The mkdir utility automatically puts two entries in each directory you create: a single
period (.) and a double period (..). The . is synonymous with the pathname of the
working directory and can be used in its place; the .. is synonymous with the path-
name of the parent of the working directory. These entries are hidden because their
filenames begin with a period.

With the literature directory as the working directory, the following example uses ..
three times: first to list the contents of the parent directory (/home/alex), second to

194 CHAPTER 6

THE LINUX FILESYSTEM

copy the memoA file to the parent directory, and third to list the contents of the
parent directory again.

$ pwd

/home/alex/Titerature

$1s ..

demo 1iterature names temp
$ cp memoA ..

$1s

demo Tliterature memoA names temp

After using cd to make promo (a subdirectory of literature) his working directory,
Alex can use a relative pathname to call vim to edit a file in his home directory.

$ cd promo
$ vim ../../names

You can use an absolute or relative pathname or a simple filename virtually any-
where that a utility or program requires a filename or pathname. This usage holds
true for Is, vim, mkdir, rm, and most other Linux utilities.

IMPORTANT STANDARD DIRECTORIES AND FILES

/bin

/boot
/dev

Originally files on a Linux system were not located in standard places. The scat-
tered files made it difficult to document and maintain a Linux system and just about
impossible for someone to release a software package that would compile and run
on all Linux systems. The first standard for the Linux filesystem, the FSSTND
(Linux Filesystem Standard), was released on February 14, 1994. In early 1995
work was started on a broader standard covering many UNIX-like systems: FHS
(Linux Filesystem Hierarchy Standard, www.pathname.com/fhs). More recently
FHS has been incorporated in LSB (Linux Standard Base, www.linuxbase.org), a
workgroup of FSG (Free Standards Group, www.freestandards.org). Figure 6-10
shows the locations of some important directories and files as specified by FHS. The
significance of many of these directories will become clear as you continue reading.

The following list describes the directories shown in Figure 6-10, some of the direc-
tories specified by FHS, and some other directories. Ubuntu Linux, however, does
not use all the directories specified by FHS. Be aware that you cannot always deter-
mine the function of a directory by its name. For example, although /opt stores add-
on software, /etc/opt stores configuration files for the software in /opt. See also
“Important Files and Directories” on page 554.

Root The root directory, present in all Linux filesystem structures, is the ancestor
of all files in the filesystem.

Essential command binaries Holds the files needed to bring the system up and run
it when it first comes up in recovery mode (page 512).

Static files of the boot loader Contains all of the files needed to boot the system.

Device files Contains all files that represent peripheral devices, such as disk drives,
terminals, and printers. Previously this directory was filled with all possible devices.

www.pathname.com/fhs
www.linuxbase.org
www.freestandards.org

DIRECTORY COMMANDS 195

/etc

/etc/opt
/etc/X11

/home

/lib
/lib/modules
/mnt

/opt

/proc

/root

/sbin

/sys
/tmp

/usr

/usr/bin

Figure 6-10 A typical FHS-based Linux filesystem structure

The udev utility (page 568) provides a dynamic device directory that enables /dev to
contain only devices that are present on the system.

Machine-local system configuration files Holds administrative, configuration,
and other system files. One of the most important is /etc/passwd, which contains a
list of all users who have permission to use the system.

Conlfiguration files for add-on software packages kept in /opt
Machine-local configuration files for the X Window System

User home directories FEach user’s home directory is typically one of many sub-
directories of the /home directory. As an example, assuming that users’ directories
are under /home, the absolute pathname of Jenny’s home directory is /home/jenny.
On some systems the users’ directories may not be found under /home but instead
might be spread among other directories such as /inhouse and /clients.

Shared libraries

Loadable kernel modules

Mount point for temporarily mounting filesystems
Add-on software packages (optional packages)
Kernel and process information virtual filesystem
Home directory for the root account

Essential system binaries Utilities used for system administration are stored in
/sbin and /usr/sbin. The /sbin directory includes utilities needed during the booting
process, and /usr/sbin holds utilities used after the system is up and running. In
older versions of Linux, many system administration utilities were scattered
through several directories that often included other system files (/etc, /usr/bin,
/usr/adm, /usr/include).

Device pseudofilesystem See udev on page 568 for more information.
Temporary files

Second major hierarchy Traditionally includes subdirectories that contain infor-
mation used by the system. Files in /usr subdirectories do not change often and may
be shared by several systems.

Most user commands Contains the standard Linux utility programs—that is,
binaries that are not needed in recovery mode (page 512).

196 CHAPTER 6

THE LINUX FILESYSTEM

/usr/games
/usr/include
/usr/lib

/usr/local

/usr/man
/usr/sbin

/usr/share

/usr/share/doc
/usr/share/info
/usr/src

/var

/var/log

/var/spool

Games and educational programs
Header files included by C programs
Libraries

Local hierarchy Holds locally important files and directories that are added to the
system. Subdirectories can include bin, games, include, lib, sbin, share, and src.

Online manuals

See /sbin.

Architecture-independent data Subdirectories can include dict, doc, games, info,
locale, man, misc, terminfo, and zoneinfo.

Nonvital system administration binaries

Documentation
GNU info system’s primary directory
Source code

Variable data Files with contents that vary as the system runs are kept in sub-
directories under /var. The most common examples are temporary files, system log
files, spooled files, and user mailbox files. Subdirectories can include cache, lib,
lock, log, opt, run, spool, tmp, and yp. Older versions of Linux scattered such files
through several subdirectories of /usr (/usr/adm, /usr/mail, /usr/spool, /usr/tmp).

Log files Contains lastlog (a record of the last login by each user), messages (sys-
tem messages from syslogd), and wtmp (a record of all logins/logouts).

Spooled application data Contains anacron, at, cron, lpd, mail, mqueue, samba,
and other directories. The file /var/spool/mail typically has a symbolic link in /var.

WORKING WITH DIRECTORIES

This section covers deleting directories, copying and moving files between directo-
ries, and moving directories. It also describes how to use pathnames to make your
work with Linux easier.

rmdir: DELETES A DIRECTORY

The rmdir (remove directory) utility deletes a directory. You cannot delete the work-
ing directory or a directory that contains files other than the . and .. entries. If you
need to delete a directory that has files in it, first use rm to delete the files and then
delete the directory. You do not have to (nor can you) delete the . and .. entries;
rmdir removes them automatically. The following command deletes the promo
directory:

$ rmdir /home/alex/11iterature/promo

The rm utility has a —r option (rm —r filename) that recursively deletes files, includ-
ing directories, within a directory and also deletes the directory itself.

WORKING WITH DIRECTORIES 197

Use rm —r carefully, if at all

Although rm -r is a handy command, you must use it carefully. Do not use it with an ambiguous
file reference such as «. It is frighteningly easy to wipe out your entire home directory with a single
short command.

USING PATHNAMES

touch Use a text editor to create a file named letter if you want to experiment with the
examples that follow. Alternatively you can use touch to create an empty file:

$ cd

$ pwd
/home/aTlex

$ touch letter

With /home/alex as the working directory, the following example uses cp with a rel-
ative pathname to copy the file letter to the /home/alex/literature/promo directory
(you will need to create promo again if you deleted it earlier). The copy of the file
has the simple filename letter.0610:

$ cp letter Titerature/promo/letter.0610

If Alex does not change to another directory, he can use vim as shown to edit the
copy of the file he just made:

$ vim Titerature/promo/letter.0610

If Alex does not want to use a long pathname to specify the file, he can use cd to
make promo the working directory before using vim:

$ cd Titerature/promo

$ pwd
/home/alex/1literature/promo
$ vim letter.0610

To make the parent of the working directory (named /home/alex/literature) the new
working directory, Alex can give the following command, which takes advantage of
the .. directory entry:

$cd ..
$ pwd
/home/alex/1iterature

mv, cp: MOVE OR COPY FILES

Chapter 5 discussed the use of mv to rename files. However, mv works even more
generally: You can use this utility to move files from one directory to another
(change the pathname of a file) as well as to change a simple filename. When used
to move one or more files to a new directory, the mv command has this syntax:

mu existing-file-list directory

198 CHAPTER 6 THE LINUX FILESYSTEM

home

names

‘ names “| temp ‘

Figure 6-11 Using mv to move names and temp

If the working directory is /home/alex, Alex can use the following command to move
the files names and temp from the working directory to the literature directory:

$ mv names temp literature

This command changes the absolute pathnames of the names and temp files from
/home/alex/names and /home/alex/temp to /home/alex/literature/names and
/home/alex/literature/temp, respectively (Figure 6-11). Like most Linux com-
mands, mv accepts either absolute or relative pathnames.

As you work with Linux and create more files, you will need to create new directo-
ries using mkdir to keep the files organized. The mv utility is a useful tool for moving
files from one directory to another as you extend your directory hierarchy.

The cp utility works in the same way as mv does, except that it makes copies of the
existing-file-list in the specified directory.

mv: MOVES A DIRECTORY

Just as it moves ordinary files from one directory to another, so mv can move direc-
tories. The syntax is similar except that you specify one or more directories, not
ordinary files, to move:

mv existing-directory-list new-directory

If new-directory does not exist, the existing-directory-list must contain just one
directory name, which mv changes to new-directory (mv renames the directory).
Although you can rename directories using mv, you cannot copy their contents with
cp unless you use the —r option. Refer to the tar and cpio man pages for other ways
to copy and move directories.

AcCCESS PERMISSIONS 199

o £
O
2 SES
) 2 S < @
N) O
S $F & LE &
O £ Fo o 8 FS g
@ S ~F £ S @ 2 5
L Lo OS5 5 5 & AN 2
&Y 39 0 Y) Q9 L
-rwxrwxr-x+ 3 alex pubs 2048 Aug 12 13:15 memo

Figure 6-12 The columns displayed by the Is -1 command

ACCESS PERMISSIONS

Ubuntu Linux supports two methods of controlling who can access a file and how
they can access it: traditional Linux access permissions and Access Control Lists
(ACLs, page 203). ACLs provide finer-grained control of access privileges. This sec-
tion describes traditional Linux access permissions.

Three types of users can access a file: the owner of the file (owner), a member of a
group that the file is associated with (group; see page 558 for more information on
groups), and everyone else (other). A user can attempt to access an ordinary file in
three ways: by trying to read from, write to, or execute it.

s —|: DISPLAYS PERMISSIONS

When you call Is with the -1 option and the name of one or more ordinary files, Is
displays a line of information about the file. The following example displays infor-
mation for two files. The file letter.0610 contains the text of a letter, and
check_spell contains a shell script, a program written in a high-level shell program-
ming language:

$ 1s -1 letter.0610 check_spell
-rw-r--r-- 1 alex pubs 3355 May 2 10:52 letter.0610
-rwxr-xr-x 2 alex pubs 852 May 5 14:03 check_spell

From left to right, the lines that an Is -1 command displays contain the following
information (refer to Figure 6-12):

e The type of file (first character)

¢ The file’s access permissions (the next nine characters)

e The ACL flag (present if the file has an ACL, page 203)

® The number of links to the file (page 209)

¢ The name of the owner of the file (usually the person who created the file)
¢ The name of the group that the file is associated with

® The size of the file in characters (bytes)

200 CHAPTER 6 THE LINUX FILESYSTEM

e The date and time the file was created or last modified
e The name of the file

The type of file (first column) for letter.0610 is a hyphen (-) because it is an ordi-
nary file (directory files have a d in this column).

The next three characters specify the access permissions for the owner of the file: r
indicates read permission, w indicates write permission, and x indicates execute per-
mission. A — in a column indicates that the owner does 7ot have the permission that
would have appeared in that position.

In a similar manner the next three characters represent permissions for the group,
and the final three characters represent permissions for other (everyone else). In the
preceding example, the owner of letter.0610 can read from and write to the file,
whereas the group and others can only read from the file and no one is allowed to
execute it. Although execute permission can be allowed for any file, it does not
make sense to assign execute permission to a file that contains a document, such as
a letter. The check_spell file is an executable shell script, so execute permission is
appropriate for it. (The owner, group, and others have execute access permission.)

chmod: CHANGES ACCESS PERMISSIONS

The owner of a file controls which users have permission to access the file and how
they can access it. When you own a file, you can use the chmod (change mode) util-
ity to change access permissions for that file. In the following example, chmod adds
(+) read and write permissions (rw) for all (a) users:

$ chmod a+rw letter.0610
$ 1s -1 letter.0610
-rw-rw-rw- 1 alex pubs 3355 May 2 10:52 letter.0610

You must have read permission to execute a shell script

Because a shell needs to read a shell script (a text file containing shell commands) before it can
execute the commands within that script, you must have read permission for the file containing
the script to execute it. You also need execute permission to execute a shell script directly on the
command line. In contrast, binary (program) files do not need to be read; they are executed
directly. You need only execute permission to run a binary (nonshell) program.

In the next example, chmod removes (=) read (r) and execute (x) permissions for
users other (o) than the owner of the file (alex) and members of the group the file is
associated with (pubs):

$ chmod o-rx check_spell
$ 1s -1 check_spell
-rwxr-x--- 2 alex pubs 852 May 5 14:03 check_spell

In addition to a (all) and o (other), you can use g (group) and u (user, although user
refers to the owner of the file who may or may not be the user of the file at any
given time) in the argument to chmod. You can also use absolute, or numeric, argu-
ments with chmod. Refer to page 283 for more information on using chmod to make
a file executable and to the chmod man page for information on absolute arguments
and chmod in general. Refer to page 558 for more information on groups.

Access PERMISSIONS 201

chmod: o for other, u for owner

When using chmod, many people assume that the o stands for owner; it does not. The o stands
for other, whereas u stands for owner (user). The acronym UGO (user-group-other) can help you
remember how permissions are named.

The Linux file access permission scheme lets you give other users access to the files
you want to share yet keep your private files confidential. You can allow other users
to read from and write to a file (handy if you are one of several people working on
a joint project). You can allow others only to read from a file (perhaps a project
specification you are proposing). Or you can allow others only to write to a file
(similar to an inbox or mailbox, where you want others to be able to send you mail
but do not want them to read your mail). Similarly you can protect entire directo-
ries from being scanned (covered shortly).

There is an exception to the access permissions just described. Anyone who can gain
root privileges (using sudo (page 490) or su) has full access to all files, regardless of
the file’s owner or access permissions.

SETUID AND SETGID PERMISSIONS

When you execute a file that has setuid (set user ID) permission, the process execut-
ing the file takes on the privileges of the file’s owner. For example, if you run a set-
uid program that removes all files in a directory, you can remove files in any of the
file owner’s directories, even if you do not normally have permission to do so.

Minimize use of setuid and setgid programs owned by root

Executable files that are setuid and owned by root have root privileges when they are run, even if
they are not run by root. This type of program is very powerful because it can do anything that
root can do (and that the program is designed to do). Similarly executable files that are setgid and
belong to the group root have extensive privileges.

Because of the power they hold and their potential for destruction, it is wise to avoid indiscrimi-
nately creating and using setuid and setgid programs owned by or belonging to the group root.
Because of their inherent dangers, many sites minimize the use of these programs on their sys-
tems. One necessary setuid program is passwd. See page 489 for a tip on setuid files owned by
root and page 521 for a command that lists setuid files on the local system.

In a similar manner, setgid (set group ID) permission means that the process execut-
ing the file takes on the privileges of the group the file is associated with. The Is util-
ity shows setuid permission by placing an s in the owner’s executable position and
setgid permission by placing an s in the group’s executable position:

$ 1s -1 programl

-FWXF-Xr-X 1 alex pubs 15828 Nov 5 06:28 programl
$ chmod u+s programl

$ 1s -1 programl

-rWSr-Xr-x 1 alex pubs 15828 Nov 5 06:28 programl
$ chmod g+s programl

$ 1s -1 programl

-rwWSr-sr-x 1 alex pubs 15828 Nov 5 06:28 programl

202 CHAPTER 6 THE LINUX FILESYSTEM

The following example shows two ways for a user working with root privileges to
give a program setuid privileges:

$ 1s -1 my-=
—rwxr-xr-x 1 root other 24152 Apr 29 16:30 myprog
—rwXr-xr-x 1 root other 24152 Apr 29 16:31 myprog2

$ sudo chmod 4755 myprog
$ sudo chmod u+s myprog2

$ 1s -1 my=
—-rwsr-xr-x 1 root other 24152 Apr 29 16:30 myprog
—-rwsr-xr-x 1 root other 24152 Apr 29 16:31 myprog2

The s in the owner execute position of the Is -1 output (page 199) indicates that the
file has setuid permission.

Do not write setuid shell scripts
Never give shell scripts setuid permission. Several techniques for subverting them are well known.

DIRECTORY ACCESS PERMISSIONS

Access permissions have slightly different meanings when they are used with direc-
tories. Although the three types of users can read from or write to a directory, the
directory cannot be executed. Execute access permission is redefined for a directory:
It means that you can cd into the directory and/or examine files that you have per-
mission to read from in the directory. It has nothing to do with executing a file.

When you have only execute permission for a directory, you can use Is to list a file
in the directory if you know its name. You cannot use Is without an argument to list
the entire contents of the directory. In the following exchange, Jenny first verifies
that she is logged in as herself. Then she checks the permissions on Alex’s info direc-
tory. You can view the access permissions associated with a directory by running Is
with the —d (directory) and -1 (long) options:

$ who am i

jenny pts/7 Aug 21 10:02
$ 1s -1d /home/alex/info
drwx----- X 2 alex pubs 512 Aug 21 09:31 /home/alex/info

$ 1s -1 /home/alex/info
1s: /home/alex/info: Permission denied

The d at the left end of the line that Is displays indicates that /home/alex/info is a
directory. Alex has read, write, and execute permissions; members of the pubs
group have no access permissions; and other users have execute permission only, as
indicated by the x at the right end of the permissions. Because Jenny does not have
read permission for the directory, the Is -1 command returns an error.

When Jenny specifies the names of the files she wants information about, she is not
reading new directory information but rather searching for specific information,
which she is allowed to do with execute access to the directory. She has read permis-
sion for notes so she has no problem using cat to display the file. She cannot display
financial because she does not have read permission for it:

ACLs: Access CONTROL Lists 203

$ 1s -1 /home/alex/info/financial /home/alex/info/notes
-rw------—- 1 alex pubs 34 Aug 21 09:31 /home/alex/info/financial
-rw-r--r-- 1 alex pubs 30 Aug 21 09:32 /home/alex/info/notes

$ cat /home/alex/info/notes

This is the file named notes.

$ cat /home/alex/info/financial

cat: /home/alex/info/financial: Permission denied

Next Alex gives others read access to his info directory:
$ chmod o+r /home/alex/info

When Jenny checks her access permissions on info, she finds that she has both read
and execute access to the directory. Now ls -1 works just fine without arguments,
but she still cannot read financial. (This restriction is an issue of file permissions,
not directory permissions.) Finally, Jenny tries to create a file named newfile by
using touch. If Alex were to give her write permission to the info directory, Jenny
would be able to create new files in it:

$ 1s -1d /home/alex/info
drwx---r-x 2 alex pubs 512 Aug 21 09:31 /home/alex/info
$ 1s -1 /home/alex/info

total 8
-rw------—- 1 alex pubs 34 Aug 21 09:31 financial
-rw-r--r-- 1 alex pubs 30 Aug 21 09:32 notes

$ cat /home/alex/info/financial

cat: financial: Permission denied

$ touch /home/alex/info/newfile

touch: cannot touch '/home/alex/info/newfile': Permission denied

ACLs: Access CONTROL LISTS

Access Control Lists (ACLs) provide finer-grained control over which users can
access specific directories and files than do traditional Linux permissions (page 199).
Using ACLs you can specify the ways in which each of several users can access a
directory or file. Because ACLs can reduce performance, do not enable them on file-
systems that hold system files, where the traditional Linux permissions are sufficient.
Also be careful when moving, copying, or archiving files: Not all utilities preserve
ACLs. In addition, you cannot copy ACLs to filesystems that do not support ACLs.

An ACL comprises a set of rules. A rule specifies how a specific user or group can
access the file that the ACL is associated with. There are two kinds of rules: access
rules and default rules. (The documentation refers to access ACLs and default
ACLs, even though there is only one type of ACL: There is one type of list [ACL]
and there are two types of rules that an ACL can contain.)

An access rule specifies access information for a single file or directory. A default
ACL pertains to a directory only; it specifies default access information (an ACL)
for any file in the directory that is not given an explicit ACL.

204 CHAPTER 6 THE LINUX FILESYSTEM

Most utilities do not preserve ACLs

When used with the —p (preserve) or —a (archive) option, cp preserves ACLs when it copies files.
Another utility that is supplied with Ubuntu Linux that preserves AGLs is mv. When you use cp
with the —p or —a option and it is not able to copy ACLs, and in the case where mv is unable to
preserve ACLs, the utility performs the operation and issues an error message:

$ mv report /tmp

mv: preserving permissions for '/tmp/report': Operation not supported
Other utilities, such as tar, cpio, and dump, do not support ACLs. You can use cp with the —a
option to copy directory hierarchies, including ACLs.

You can never copy ACLs to a filesystem that does not support ACLs or to a filesystem that does
not have AGL support turned on.

ENABLING ACLS

Before you can use ACLs you must install the acl software package:
$ sudo aptitude install acl

Ubuntu Linux officially supports ACLs on ext2 and ext3 filesystems only, although
informal support for ACLs is available on other filesystems. To use ACLs on an
ext2 or ext3 filesystem, you must mount the device with the acl option (no_acl is
the default). For example, if you want to mount the device represented by /home so
that you can use ACLs on files in /home, you can add acl to its options list in
/etc/fstab:

$ grep home /etc/fstab
LABEL=/home /home ext3 defaults,acl 12

After changing fstab, you need to remount /home before you can use ACLs. If no
one else is using the system, you can unmount it and mount it again (working with
root privileges) as long as your working directory is not in the /home hierarchy.
Alternatively you can use the remount option to mount to remount /home while the
device is in use:

mount -v -o remount /home
/dev/hda3 on /home type ext3 (rw,acl)

See page 576 for information on fstab and page 572 for information on mount.

WORKING WITH ACCESS RULES

The setfacl utility modifies a file’s ACL and the getfacl utility displays a file’s ACL.
When you use getfacl to obtain information about a file that does not have an ACL,
it displays the same information as an Is -1 command, albeit in a different format:

$ 1s -1 report
-rw-r--r-- 1 max max 9537 Jan 12 23:17 report

$ getfacl report
file: report

owner: max

group: max

ACLs: Access CONTROL ListTs 205

user::rw-
group::r--
other::r--

The first three lines of the getfacl output are called the header; they specify the name
of the file, the owner of the file, and the group the file is associated with. For more
information refer to “ls —|: Displays Permissions” on page 199. The ——omit-header
(or just ——omit) option causes getfacl not to display the header:

$ getfacl --omit-header report

user::rw-
group::r--
other::r--

In the line that starts with user, the two colons (::) with no name between them indi-
cate that the line specifies the permissions for the owner of the file. Similarly, the
two colons in the group line indicate that the line specifies permissions for the group
the file is associated with. The two colons following other are there for consistency:
No name can be associated with other.

The setfacl ——modify (or —m) option adds or modifies one or more rules in a file’s
ACL using the following format:

setfacl ——modify ugo:name:permissions file-list

where ugo can be either u, g, or o to indicate that the command sets file permissions
for a user, a group, or all other users, respectively; name is the name of the user or
group that permissions are being set for; permissions is the permissions in either
symbolic or absolute format; and file-list is the list of files that the permissions are
to be applied to. You must omit name when you specify permissions for other users
(0). Symbolic permissions use letters to represent file permissions (rwx, r—x, and so
on), whereas absolute permissions use an octal number. While chmod uses three sets
of permissions or three octal numbers (one each for the owner, group, and other
users), setfacl uses a single set of permissions or a single octal number to represent
the permissions being granted to the user or group represented by #go and name.

For example, both of the following commands add a rule to the ACL for the report
file that gives Sam read and write permission to that file:

$ setfacl --modify u:sam:rw- report

or
$ setfacl --modify u:sam:6 report

$ getfacl report
file: report

owner: max

group: max

user::rw-
user:sam:rw-
group::r--
mask: :rw-

other::r--

206 CHAPTER 6 THE LINUX FILESYSTEM

optional

The line containing user:sam:rw— shows that the user named sam has read and
write access (rw-) to the file. See page 199 for an explanation of how to read sym-
bolic access permissions. See the following optional section for a description of the
line that starts with mask.

When a file has an ACL, Is -1 displays a plus sign (+) following the permissions,
even if the ACL is empty:

$ 1s -1 report
-rw-rw-r--+ 1 max max 9537 Jan 12 23:17 report

EFFECTIVE RIGHTS MASK

The line that starts with mask specifies the effective rights mask. This mask limits
the effective permissions granted to ACL groups and users. It does not affect the
owner of the file or the group the file is associated with. In other words, it does not
affect traditional Linux permissions. However, because getfacl always sets the effec-
tive rights mask to the least restrictive ACL permissions for the file, the mask has no
effect unless you set it explicitly after you set up an ACL for the file. You can set the
mask by specifying mask in place of #go and by not specifying a name in a setfacl
command.

The following example sets the effective rights mask to read for the report file:
$ setfacl -m mask::r-- report

The mask line in the following getfacl output shows the effective rights mask set to
read (r--). The line that displays Sam’s file access permissions shows them still set
to read and write. However, the comment at the right end of the line shows that his
effective permission is read.

$ getfacl report

file: report

owner: max

group: max

user::rw-

user:sam:rw- #effective:r--
group::r--

mask::r--

other::r--

As the next example shows, setfacl can modify ACL rules and can set more than one
ACL rule at a time:

$ setfacl -m u:sam:r--,u:zach:rw- report

$ getfacl --omit-header report
user::rw-

user:sam:r--

user:zach:rw-

group::r--

ACLs: Access CONTROL ListTs 207

mask: :rw-
other::r--

The —x option removes ACL rules for a user or a group. It has no effect on permis-
sions for the owner of the file or the group that the file is associated with. The next
example shows setfacl removing the rule that gives Sam permission to access the file:

$ setfacl -x u:sam report

$ getfacl --omit-header report
user::rw-

user:zach:rw-

group::r--

mask: :rw-

other::r--

You must not specify permissions when you use the —x option. Instead, specify only
the ugo and name. The -b option, followed by a filename only, removes all ACL
rules and the ACL itself from the file or directory you specify.

Both setfacl and getfacl have many options. Use the ——help option to display brief
lists of options or refer to the man pages for details.

SETTING DEFAULT RULES FOR A DIRECTORY

The following example shows that the dir directory initially has no ACL. The setfacl
command uses the —d option to add two default rules to the ACL for dir. These rules
apply to all files in the dir directory that do not have explicit ACLs. The rules give
members of the pubs group read and execute permissions and give members of the
admin group read, write, and execute permissions.

$ 1s -1d dir

drwx------ 2 max max 4096 Feb 12 23:15 dir
$ getfacl dir

file: dir

owner: max

group: max

user::rwx

group::---

other::---

$ setfacl -d -m g:pubs:r-x,g:admin:rwx dir

The following Is command shows that the dir directory now has an ACL, as indi-
cated by the + to the right of the permissions. Each of the default rules that getfacl
displays starts with default:. The first two default rules and the last default rule spec-
ify the permissions for the owner of the file, the group that the file is associated with,
and all other users. These three rules specify the traditional Linux permissions and
take precedence over other ACL rules. The third and fourth rules specify the permis-
sions for the pubs and admin groups. Next is the default effective rights mask.

208 CHAPTER 6 THE LINUX FILESYSTEM

$ 1s -1d dir

drwx------ + 2 max max 4096 Feb 12 23:15 dir
$ getfacl dir

file: dir

owner: max

group: max

user::rwx

group::---

other::---
default:user::rwx
default:group::---
default:group:pubs:r-x
default:group:admin:rwx
default:mask: :rwx
default:other::---

Remember that the default rules pertain to files held in the directory that are not
assigned ACLs explicitly. You can also specify access rules for the directory itself.

When you create a file within a directory that has default rules in its ACL, the effec-
tive rights mask for that file is created based on the file’s permissions. In some cases
the mask may override default ACL rules.

In the next example, touch creates a file named new in the dir directory. The Is com-
mand shows that this file has an ACL. Based on the value of umask (page 526), both
the owner and the group that the file is associated with have read and write permis-
sions for the file. The effective rights mask is set to read and write so that the effec-
tive permission for pubs is read and the effective permissions for admin are read and
write. Neither group has execute permission.

$ cd dir

$ touch new

$ 1s -1 new

-rw-rw----+ 1 max max @ Feb 13 00:39 new

$ getfacl --omit new

user::rw-

group::---

group:pubs:r-x #effective:r--
group:admin: rwx #effective:rw-
mask: :rw-

other::---

If you change the file’s traditional permissions to read, write, and execute for the
owner and the group, the effective rights mask changes to read, write, and execute
and the groups specified by the default rules gain execute access to the file.

$ chmod 770 new

$ 1s -1 new

-rwxrwx---+ 1 max max @ Feb 13 00:39 new
$ getfacl --omit new

user::rwx

group::---

group:pubs:r-x

group:admin:rwx

mask: : rwx

other::---

LiINks 209

LINKS

correspond

business

personal

‘ to_do H to_do H to_do H personal H memos H business

Links\ % . j J

Figure 6-13 Using links to cross-classify files

A link is a pointer to a file. Every time you create a file by using vim, touch, cp, or
any other means, you are putting a pointer in a directory. This pointer associates a
filename with a place on the disk. When you specify a filename in a command, you
are indirectly pointing to the place on the disk that holds the information you want.

Sharing files can be useful when two or more people are working on the same
project and need to share some information. You can make it easy for other users to
access one of your files by creating additional links to the file.

To share a file with another user, first give the user permission to read from and
write to the file (page 200). You may also have to change the access permissions
of the parent directory of the file to give the user read, write, or execute permis-
sion (page 202). Once the permissions are appropriately set, the user can create a
link to the file so that each of you can access the file from your separate directory
hierarchies.

A link can also be useful to a single user with a large directory hierarchy. You can
create links to cross-classify files in your directory hierarchy, using different classifi-
cations for different tasks. For example, if you have the file layout depicted in
Figure 6-2 on page 1835, a file named to_do might appear in each subdirectory of
the correspond directory—that is, in personal, memos, and business. If you find it
difficult to keep track of everything you need to do, you can create a separate direc-
tory named to_do in the correspond directory. You can then link each subdirectory’s
to-do list into that directory. For example, you could link the file named to_do in
the memos directory to a file named memos in the to_do directory. This set of links
is shown in Figure 6-13.

Although it may sound complicated, this technique keeps all your to-do lists con-
veniently in one place. The appropriate list is easily accessible in the task-related
directory when you are busy composing letters, writing memos, or handling per-
sonal business.

210 CHAPTER 6 THE LINUX FILESYSTEM

About the discussion of hard links

Two kinds of links exist: hard links and symbolic (soft) links. Hard links are older and becoming
outdated. The section on hard links is marked as optional; you can skip it, although it discusses
inodes and gives you insight into the structure of the filesystem.

optional

HARD LINKS

A hard link to a file appears as another file. If the file appears in the same directory
as the linked-to file, the links must have different filenames because two files in the
same directory cannot have the same name. You can create a hard link to a file only
from within the filesystem that holds the file.

In: CREATES A HARD LINK

The In (link) utility (without the —s or ——symbolic option) creates a hard link to an
existing file using the following syntax:

In existing-file new-link

The next command makes the link shown in Figure 6-14 by creating a new link
named /home/alex/letter to an existing file named draft in Jenny’s home directory:
$ pwd
/home/jenny
$ In draft /home/alex/letter

The new link appears in the /home/alex directory with the filename letter. In prac-
tice, Alex may need to change the directory and file permissions so that Jenny will
be able to access the file. Even though /home/alex/letter appears in Alex’s directory,
Jenny is the owner of the file because she created it.

| memo ‘ | ‘ | planning ‘

/home/alex/letter and /home/ienny/d‘rh

Figure 6-14 Two links to the same file: /home/alex/letter and /home/jenny/draft

LINks 211

The In utility creates an additional pointer to an existing file but it does not make
another copy of the file. Because there is only one file, the file status informa-
tion—such as access permissions, owner, and the time the file was last modified—is
the same for all links; only the filenames differ. When Jenny modifies
/home/jenny/draft, for example, Alex sees the changes in /home/alex/letter.

Cp VERSUS |n

The following commands verify that In does not make an additional copy of a file.
Create a file, use In to make an additional link to the file, change the contents of the
file through one link, and verify the change through the other link:

$ cat file_a

This is file A.

$ In file_a file_b
$ cat file_b

This is file A.

$ vim file_b

$ cat file_b
This is file B after the change.
$ cat file_a
This is file B after the change.

If you try the same experiment using cp instead of In and change a copy of the file,
the difference between the two utilities will become clearer. Once you change a copy
of a file, the two files are different:

$ cat file_c

This is file C.

$ cp file_c file_d
$ cat file_d

This is file C.

$ vim file_d

$ cat file_d

This is file D after the change.
$ cat file_c

This is file C.

Is and link counts You can use Is with the -1 option, followed by the names of the files you want to
compare, to confirm that the status information is the same for two links to the same
file and is different for files that are not linked. In the following example, the 2 in the
links field (just to the left of alex) shows there are two links to file_a and file_b:

$ 1s -1 file_a file_b file_c file_d

-rw-r--r-- 2 alex pubs 33 May 24 10:52 file_a
-rw-r--r-- 2 alex pubs 33 May 24 10:52 file_b
-rw-r--r-- 1 alex pubs 16 May 24 10:55 file_c
-rw-r--r-- 1 alex pubs 33 May 24 10:57 file_d

Although it is easy to guess which files are linked to one another in this example, Is
does not explicitly tell you.

212 CHAPTER 6

THE LINUX FILESYSTEM

Is and inodes

Use Is with the —i option to determine without a doubt which files are linked. The —i
option lists the inode (page 1041) number for each file. An inode is the control
structure for a file. If the two filenames have the same inode number, they share the
same control structure and are links to the same file. Conversely, when two file-
names have different inode numbers, they are different files. The following example
shows that file_a and file_ b have the same inode number and that file ¢ and file_d
have different inode numbers:

$ 1s -i file_a file_b file_c file_d
3534 file_a 3534 file_b 5800 file_c 7328 file_d

All links to a file are of equal value: The operating system cannot distinguish the
order in which multiple links were created. When a file has two links, you can
remove either one and still access the file through the remaining link. You can remove
the link used to create the file, for example, and, as long as one link remains, still
access the file through that link.

SYMBOLIC LINKS

Advantages of
symbolic links

In addition to hard links, Linux supports symbolic links, also called soft links or
symlinks. A hard link is a pointer to a file (the directory entry points to the inode),
whereas a symbolic link is an indirect pointer to a file (the directory entry contains
the pathname of the pointed-to file—a pointer to the hard link to the file).

Symbolic links were developed because of the limitations inherent in hard links.
You cannot create a hard link to a directory, but you can create a symbolic link to a
directory.

In many cases the Linux file hierarchy encompasses several filesystems. Because
each filesystem keeps separate control information (that is, separate inode tables or
filesystem structures) for the files it holds, it is not possible to create hard links
between files in different filesystems. A symbolic link can point to any file, regard-
less of where it is located in the file structure, but a hard link to a file must be in the
same filesystem as the other hard link(s) to the file. When you create links only
among files in your home directory, you will not notice this limitation.

A major advantage of a symbolic link is that it can point to a nonexistent file. This
ability is useful if you need a link to a file that is periodically removed and re-
created. A hard link keeps pointing to a “removed” file, which the link keeps alive
even after a new file is created. In contrast, a symbolic link always points to the
newly created file and does not interfere when you delete the old file. For example,
a symbolic link could point to a file that gets checked in and out under a source
code control system, a .o file that is re-created by the C compiler each time you run
make, or a log file that is repeatedly archived.

Although they are more general than hard links, symbolic links have some disad-
vantages. Whereas all hard links to a file have equal status, symbolic links do not
have the same status as hard links. When a file has multiple hard links, it is analo-
gous to a person having multiple full legal names, as many married women do. In

LINks 213

optional

contrast, symbolic links are analogous to nicknames. Anyone can have one or more
nicknames, but these nicknames have a lesser status than legal names. The follow-
ing sections describe some of the peculiarities of symbolic links.

In: CREATES A SYMBOLIC LINK

You use In with the ——symbolic (or —s) option to create a symbolic link. The follow-
ing example creates a symbolic link /tmp/s3 to the file sum in Alex’s home direc-
tory. When you use an Is =1 command to look at the symbolic link, Is displays the
name of the link and the name of the file it points to. The first character of the list-
ing is | (for link).

$ In --symbolic /home/alex/sum /tmp/s3

$ 1s -1 /home/alex/sum /tmp/s3

-rw-rw-r-- 1 alex alex 38 Jun 12 09:51 /home/alex/sum

Trwxrwx rwx 1 alex alex 14 Jun 12 09:52 /tmp/s3 -> /home/alex/sum
$ cat /tmp/s3

This 1is sum.

The sizes and times of the last modifications of the two files are different. Unlike a
hard link, a symbolic link to a file does not have the same status information as the
file itself.

You can also use In to create a symbolic link to a directory. When you use the
——symbolic option, In does not care whether the file you are creating a link to is an
ordinary file or a directory.

Use absolute pathnames with symbolic links

Symbolic links are literal and are not aware of directories. A link that points to a relative pathname,
which includes simple filenames, assumes that the relative pathname is relative to the directory
that the link was created in (not the directory the link was created from). In the following example,
the link points to the file named sum in the /tmp directory. Because no such file exists, cat gives
an error message:

$ pwd

/home/alex

$ Tn --symbolic sum /tmp/s4

$ 1s -1 sum /tmp/s4

Trwxrwxrwx 1 alex alex 3 Jun 12 10:13 /tmp/s4 -> sum

-rw-rw-r-- 1 alex alex 38 Jun 12 09:51 sum

$ cat /tmp/s4

cat: /tmp/s4: No such file or directory

cd AND SYMBOLIC LINKS

When you use a symbolic link as an argument to cd to change directories, the results
can be confusing, particularly if you did not realize that you were using a symbolic link.

If you use cd to change to a directory that is represented by a symbolic link, the pwd
shell builtin lists the name of the symbolic link. The pwd utility (/bin/pwd) lists the
name of the linked-to directory, not the link, regardless of how you got there.

214 CHAPTER 6 THE LINUX FILESYSTEM

$ Tn -s /home/alex/grades /tmp/grades.old
$ pwd

/home/alex

$ cd /tmp/grades.old

$ pwd

/tmp/grades.old

$ /bin/pwd

/home/alex/grades

When you change directories back to the parent, you end up in the directory hold-
ing the symbolic link:

$cd ..

$ pwd
/tmp

$ /bin/pwd
/tmp

rm: REMOVES A LINK

When you create a file, there is one hard link to it. You can then delete the file or,
using Linux terminology, remove the link with the rm utility. When you remove the
last hard link to a file, you can no longer access the information stored there and the
operating system releases the space the file occupied on the disk for subsequent use
by other files. This space is released even if symbolic links to the file remain. When
there is more than one hard link to a file, you can remove a hard link and still access
the file from any remaining link. Unlike DOS and Windows, Linux does not provide
an easy way to undelete a file once you have removed it. A skilled hacker, however,
can sometimes piece the file together with time and effort.

When you remove all hard links to a file, you will not be able to access the file
through a symbolic link. In the following example, cat reports that the file total
does not exist because it is a symbolic link to a file that has been removed:

$ 1s -1 sum

-rw-r--r-- 1 alex pubs 981 May 24 11:05 sum

$ Tn -s sum total

$ rm sum

$ cat total

cat: total: No such file or directory

$ 1s -1 total

Trwxrwxrwx 1 alex pubs 6 May 24 11:09 total -> sum

When you remove a file, be sure to remove all symbolic links to it. Remove a sym-
bolic link in the same way you remove other files:

$ rm total

CHAPTER SUMMARY

Linux has a hierarchical, or treelike, file structure that makes it possible to orga-
nize files so that you can find them quickly and easily. The file structure contains

CHAPTER SUMMARY 215

directory files and ordinary files. Directories contain other files, including other
directories; ordinary files generally contain text, programs, or images. The ances-
tor of all files is the root directory named /.

Most Linux filesystems support 255-character filenames. Nonetheless, it is a good
idea to keep filenames simple and intuitive. Filename extensions can help make file-
names more meaningful.

When you are logged in, you are always associated with a working directory. Your
home directory is your working directory from the time you log in until you use cd
to change directories.

An absolute pathname starts with the root directory and contains all the filenames that
trace a path to a given file. The pathname starts with a slash, representing the root
directory, and contains additional slashes between the other filenames in the path.

A relative pathname is similar to an absolute pathname but traces the path starting
from the working directory. A simple filename is the last element of a pathname and
is a form of a relative pathname.

A Linux filesystem contains many important directories, including /usr/bin, which
stores most of the Linux utility commands, and /dev, which stores device files, many of
which represent physical pieces of hardware. An important standard file is /etc/passwd;
it contains information about users, such as each user’s ID and full name.

Among the attributes associated with each file are access permissions. They deter-
mine who can access the file and how the file may be accessed. Three groups of
users can potentially access the file: the owner, the members of a group, and all
other users. An ordinary file can be accessed in three ways: read, write, and execute.
The Is utility with the -1 option displays these permissions. For directories, execute
access is redefined to mean that the directory can be searched.

The owner of a file or a user working with root privileges can use the chmod utility
to change the access permissions of a file. This utility specifies read, write, and exe-
cute permissions for the file’s owner, the group, and all other users on the system.

Access Control Lists (ACLs) provide finer-grained control over which users can
access specific directories and files than do traditional Linux permissions. Using
ACLs you can specify the ways in which each of several users can access a directory
or file. Few utilities preserve ACLs when working with these files.

An ordinary file stores user data, such as textual information, programs, or images.
A directory is a standard-format disk file that stores information, including names,
about ordinary files and other directory files. An inode is a data structure, stored on
disk, that defines a file’s existence and is identified by an inode number. A directory
relates each of the filenames it stores to a specific inode.

A link is a pointer to a file. You can have several links to a single file so that you can
share the file with other users or have the file appear in more than one directory.
Because only one copy of a file with multiple links exists, changing the file through
any one link causes the changes to appear in all the links. Hard links cannot link
directories or span filesystems, whereas symbolic links can.

216 CHAPTER 6 THE LINUX FILESYSTEM

Table 6-2 summarizes the utilities introduced in this chapter.

Utilities introduced in Chapter 6

Utility Function
cd Associates you with another working directory (page 193)
chmod Changes the access permissions on a file (page 200)
getfacl Displays a file’s ACL (page 204)
In Makes a link to an existing file (page 210)
mkdir Creates a directory (page 191)
pwd Displays the pathname of the working directory (page 188)
rmdir Deletes a directory (page 196)
setfacl Modifies a file’s ACL (page 204)

EXERCISES

1. Is each of the following an absolute pathname, a relative pathname, or a
simple filename?

a. milk_co
b. correspond/business/milk_co
c. /home/alex
d. /home/alex/literature/promo
€. ..
f. letter.0610
2. List the commands you can use to perform these operations:
a. Make your home directory the working directory
b. Identify the working directory

3. If your working directory is /home/alex with a subdirectory named litera-
ture, give three sets of commands that you can use to create a subdirectory
named classics under literature. Also give several sets of commands you
can use to remove the classics directory and its contents.

4. The df utility displays all mounted filesystems along with information
about each. Use the df utility with the —~h (human-readable) option to
answer the following questions.

a. How many filesystems are mounted on your Linux system?

b. Which filesystem stores your home directory?

EXERCISES

217

10.

c. Assuming that your answer to exercise 4a is two or more, attempt to
create a hard link to a file on another filesystem. What error message do
you get? What happens when you attempt to create a symbolic link to
the file instead?

. Suppose that you have a file that is linked to a file owned by another user.

How can you ensure that changes to the file are no longer shared?

. You should have read permission for the /etc/passwd file. To answer the

following questions, use cat or less to display /etc/passwd. Look at the
fields of information in /etc/passwd for the users on your system.

Which character is used to separate fields in /etc/passwd?

a.
b. How many fields are used to describe each user?

@]

. How many users are on your system?

d. How many different login shells are in use on your system? (Hint: Look

at the last field.)

e. The second field of /etc/passwd stores user passwords in encoded form.
If the password field contains an x, your system uses shadow passwords
and stores the encoded passwords elsewhere. Does your system use
shadow passwords?

. If /home/jenny/draft and /home/alex/letter are links to the same file and

the following sequence of events occurs, what will be the date in the open-
ing of the letter?

a. Alex gives the command vim letter.
b. Jenny gives the command vim draft.

c. Jenny changes the date in the opening of the letter to January 31, 2008,
writes the file, and exits from vim.

d. Alex changes the date to February 1, 2008, writes the file, and exits
from vim.

. Suppose that a user belongs to a group that has all permissions on a file

named jobs_list, but the user, as the owner of the file, has no permissions.
Describe which operations, if any, the user/owner can perform on
jobs_list. Which command can the user/owner give that will grant the
user/owner all permissions on the file?

. Does the root directory have any subdirectories that you cannot search as

a regular user? Does the root directory have any subdirectories that you
cannot read as a regular user? Explain.

Assume that you are given the directory structure shown in Figure 6-2 on
page 185 and the following directory permissions:

d--x--x--- 3 jenny pubs 512 Mar 10 15:16 business
drwxr-xr-x 2 jenny pubs 512 Mar 10 15:16 business/milk_co

218 CHAPTER 6 THE LINUX FILESYSTEM

For each category of permissions—owner, group, and other—what hap-
pens when you run each of the following commands? Assume that the
working directory is the parent of correspond and that the file cheese_co is
readable by everyone.

a. cd correspond/business/milk_co
b. Is -1 correspond/business

c. cat correspond/business/cheese_co

ADVANCED EXERCISES

11

12.

13.

14.

15.

16.

17.

18.

. What is an inode? What happens to the inode when you move a file within
a filesystem?

What does the .. entry in a directory point to? What does this entry point
to in the root (/) directory?

How can you create a file named —i? Which techniques do not work, and
why do they not work? How can you remove the file named -i?

Suppose that the working directory contains a single file named andor.
What error message do you get when you run the following command line?

$ mv andor and\/or

Under what circumstances is it possible to run the command without pro-
ducing an error?

The Is —i command displays a filename preceded by the inode number of
the file (page 212). Write a command to output inode/filename pairs for the
files in the working directory, sorted by inode number. (Hint: Use a pipe.)

Do you think that the system administrator has access to a program that
can decode user passwords? Why or why not? (See exercise 6.)

Is it possible to distinguish a file from a hard link to a file? That is, given a
filename, can you tell whether it was created using an In command?
Explain.

Explain the error messages displayed in the following sequence of commands:

$ 1s -1

total 1

drwxrwxr-x 2 alex pubs 1024 Mar 2 17:57 dirtmp
$ 1s dirtmp

$ rmdir dirtmp

rmdir: dirtmp: Directory not empty

$ rm dirtmp/:

rm: No match.

IN THIS CHAPTER

The Command Line............ 220
Standard Input and Standard

Output ..., 226
Pipes ...l 234

Running a Program in the
Background 237

kill: Aborting a Background Job .. 238

Filename Generation/Pathname
Expansion 239

Builtins L.t 243

THE SHELL

This chapter takes a close look at the shell and explains how to
use some of its features. For example, it discusses command line
syntax and also describes how the shell processes a command
line and initiates execution of a program. The chapter also
explains how to redirect input to and output from a command,
construct pipes and filters on the command line, and run a com-
mand in the background. The final section covers filename
expansion and explains how you can use this feature in your
everyday work.

The exact wording of the shell output differs from shell to shell:
What your shell displays may differ slightly from what appears
in this book. Refer to Chapter 9 for more information on bash
and to Chapter 11 for information on writing and executing
bash shell scripts.

219

220 CHAPTER7 THE SHELL

THE COMMAND LINE

SYNTAX

Usage message

The shell executes a program when you give it a command in response to its
prompt. For example, when you give the Is command, the shell executes the utility
program named Is. You can cause the shell to execute other types of programs—
such as shell scripts, application programs, and programs you have written—in the
same way. The line that contains the command, including any arguments, is called
the command line. In this book the term command refers to the characters you type
on the command line as well as to the program that action invokes.

Command line syntax dictates the ordering and separation of the elements on a
command line. When you press the RETURN key after entering a command, the shell
scans the command line for proper syntax. The syntax for a basic command line is

command [argl] [arg2] ... [argn] RETURN

One or more SPACEs must separate elements on the command line. The command is
the name of the command, argl through argn are arguments, and RETURN is the key-
stroke that terminates all command lines. The brackets in the command line syntax
indicate that the arguments they enclose are optional. Not all commands require
arguments: Some commands do not allow arguments; other commands allow a
variable number of arguments; and others require a specific number of arguments.
Options, a special kind of argument, are usually preceded by one or two hyphens
(also called a dash or minus sign: —).

ComMAND NAME

Some useful Linux command lines consist of only the name of the command with-
out any arguments. For example, Is by itself lists the contents of the working direc-
tory. Most commands accept one or more arguments. Commands that require
arguments typically give a short error message, called a usage message, when you
use them without arguments, with incorrect arguments, or with the wrong number
of arguments.

ARGUMENTS

On the command line each sequence of nonblank characters is called a token or
word. An argument is a token, such as a filename, string of text, number, or other
object that a command acts on. For example, the argument to a vim or emacs com-
mand is the name of the file you want to edit.

The following command line shows cp copying the file named temp to tempcopy:

$ cp temp tempcopy

THE COMMAND LINE 221

Combining options

Arguments are numbered starting with the command itself as argument zero. In this
example cp is argument zero, temp is argument one, and tempcopy is argument
two. The cp utility requires two arguments on the command line. (The utility can
take more arguments but not fewer.) Argument one is the name of an existing file.
Argument two is the name of the file that cp is creating or overwriting. Here the
arguments are not optional; both arguments must be present for the command to
work. When you do not supply the right number or kind of arguments, cp displays
a usage message. Try typing cp and then pressing RETURN.

OPTIONS

An option is an argument that modifies the effects of a command. You can fre-
quently specify more than one option, modifying the command in several different
ways. Options are specific to and interpreted by the program that the command line
calls, not the shell.

By convention options are separate arguments that follow the name of the com-
mand and usually precede other arguments, such as filenames. Most utilities require
you to prefix options with a single hyphen. However, this requirement is specific to
the utility and not the shell. GNU program options are frequently preceded by two
hyphens in a row. For example, ——help generates a (sometimes extensive) usage
message.

Figure 7-1 first shows what happens when you give an Is command without any
options. By default Is lists the contents of the working directory in alphabetical
order, vertically sorted in columns. Next the —r (reverse order; because this is a
GNU utility, you can also use ——reverse) option causes the Is utility to display the
list of files in reverse alphabetical order, still sorted in columns. The —x option
causes Is to display the list of files in horizontally sorted rows.

When you need to use several options, you can usually group multiple single-letter
options into one argument that starts with a single hyphen; do not put SPACEs
between the options. You cannot combine options that are preceded by two

$ 1s

alex house mark office personal test
hold jenny names oldstuff temp

$1s -r

test personal office mark house alex
temp oldstuff names jenny hold

$ 1s -x

alex hold house jenny mark names
office oldstuff personal temp test

$ 1s -rx

test temp personal oldstuff office names
mark jenny house hold alex

Figure 7-1 Using options

222 CHAPTER 7

THE SHELL

Option arguments

Arguments that start
with a hyphen

hyphens in this way, however. Specific rules for combining options depend on the
program you are running. Figure 7-1 shows both the —r and —x options with the Is
utility. Together these options generate a list of filenames in horizontally sorted col-
umns, in reverse alphabetical order. Most utilities allow you to list options in any
order; thus Is —xr produces the same results as Is -rx. The command Is —=x -r also
generates the same list.

Displaying readable file sizes: the —h option

Most utilities that report on file sizes specify the size of a file in bytes. Bytes work well when you
are dealing with smaller files, but the numbers can be difficult to read when you are working with
file sizes that are measured in megabytes or gigabytes. Use the —h (or ——human-readable) option
to display file sizes in kilo-, mega-, and gigabytes. Experiment with df —h (disk free) and Is —lh
commands.

Some utilities have options that themselves require arguments. For example, the gcc
utility has a —o option that must be followed by the name you want to give the exe-
cutable file that gcc generates. Typically an argument to an option is separated from
its option letter by a SPACE:

$ gcc -o prog prog.c

Another convention allows utilities to work with arguments, such as filenames, that
start with a hyphen. If a file’s name is -1, the following command is ambiguous:

$ 1s -1

This command could mean a long listing of all files in the working directory or a
listing of the file named -1. It is interpreted as the former. You should avoid creating
files whose names begin with hyphens. If you do create them, many utilities follow
the convention that a —— argument (two consecutive hyphens) indicates the end of
the options (and the beginning of the arguments). To disambiguate the command,
you can type

$1s -- -1

You can use an alternative format in which the period refers to the working direc-
tory and the slash indicates that the name refers to a file in the working directory:

$1s ./-1

Assuming that you are working in the /home/alex directory, the preceding com-
mand is functionally equivalent to

$ 1s /home/alex/-1
You can give the following command to get a long listing of this file:

$1s -1 -- -1

THE COMMAND LINE 223

These are conventions, not hard-and-fast rules, and a number of utilities do not fol-
low them (e.g., find). Following such conventions is a good idea; it makes it much
easier for users to work with your program. When you write shell programs that
require options, follow the Linux option conventions.

The —help option

Many utilities display a (sometimes extensive) help message when you call them with an argument
of ——=help. All utilities developed by the GNU Project (page 2) accept this option. An example follows.
$ bzip2 --help
bzip2, a block-sorting file compressor. Version 1.0.2, 30-Dec-2001.

usage: bzip2 [flags and input files in any order]

-h --help print this message

-d --decompress force decompression

-z --compress force compression

-k --keep keep (don't delete) input files

-f --force overwrite existing output files

-t --test test compressed file integrity

-c --stdout output to standard out

-q --quiet suppress noncritical error messages
-v --verbose be verbose (a 2nd -v gives more)

PROCESSING THE COMMAND LINE

Parsing the
command line

As you enter a command line, the Linux tty device driver (part of the Linux operating
system kernel) examines each character to see whether it must take immediate
action. When you press CONTROL-H (to erase a character) or CONTROL-U (to kill a line), the
device driver immediately adjusts the command line as required; the shell never sees
the character(s) you erased or the line you killed. Often a similar adjustment occurs
when you press CONTROL-W (to erase a word). When the character you entered does not
require immediate action, the device driver stores the character in a buffer and waits
for additional characters. When you press RETURN, the device driver passes the com-
mand line to the shell for processing.

When the shell processes a command line, it looks at the line as a whole and parses
(breaks) it into its component parts (Figure 7-2). Next the shell looks for the name
of the command. Usually the name of the command is the first item on the com-
mand line after the prompt (argument zero). The shell takes the first characters on
the command line up to the first blank (TABor SPACE) and then looks for a command
with that name. The command name (the first token) can be specified on the com-
mand line either as a simple filename or as a pathname. For example, you can call
the Is command in either of the following ways:

$ 1s
$ /bin/1s

224 CHAPTER7 THE SHELL

optional

Absolute versus
relative pathnames

!

Get first word
and save as
command name

@
-

Y

Get more
of the
command line

NEWLINE

Does
program
exist?

Display

Execute program not found

Issue prompt /<

Figure 7-2 Processing the command line

The shell does not require that the name of the program appear first on the com-
mand line. Thus you can structure a command line as follows:

$ >bb <aa cat

This command runs cat with standard input coming from the file named aa and
standard output going to the file named bb. When the shell recognizes the redirect
symbols (page 228), it recognizes and processes them and their arguments before
finding the name of the program that the command line is calling. This is a properly
structured—albeit rarely encountered and possibly confusing—command line.

When you give an absolute pathname on the command line or a relative pathname
that is not a simple filename (i.e., any pathname that includes at least one slash), the
shell looks in the specified directory (/bin in the case of the /bin/ls command) for a
file that has the name Is and that you have permission to execute. When you give a
simple filename, the shell searches through a list of directories for a filename that
matches the specified name and that you have execute permission for. The shell does
not look through all directories but only the ones specified by the variable named
PATH. Refer to page 302 for more information on PATH. Also refer to the discus-
sion of the which and whereis utilities on page 164.

THE COMMAND LINE 225

When it cannot find the executable file, the Bourne Again Shell (bash) displays a
message such as the following:

$ abc
bash: abc: command not found

One reason the shell may not be able to find the executable file is that it is not in a
directory in your PATH. Under bash the following command temporarily adds the
working directory (.) to your PATH:

$ PATH=$PATH:.

For security reasons, you may not want to add the working directory to PATH per-
manently; see the adjacent tip and the one on page 303.

Try giving a command as ./command

You can always execute an executable file in the working directory by prepending ./ to the name
of the file. For example, if myprog is an executable file in the working directory, you can execute
it with the following command, regardless of how PATH is set:

$./myprog

When the shell finds the program but cannot execute it (you do not have execute
permission for the file that contains the program), it displays a message similar to

$ def
bash: ./def: Permission denied

See “Is —1: Displays Permissions” on page 199 for information on displaying access
permissions for a file and “chmod: Changes Access Permissions” on page 200 for
instructions on how to change file access permissions.

EXECUTING THE COMMAND LINE

Process

The shell does not
process arguments

If it finds an executable file with the same name as the command, the shell starts a
new process. A process is the execution of a command by Linux (page 310). The shell
makes each command line argument, including options and the name of the com-
mand, available to the called program. While the command is executing, the shell
waits for the process to finish. At this point the shell is in an inactive state called sleep.
When the program finishes execution, it passes its exit status (page 438) to the shell.
The shell then returns to an active state (wakes up), issues a prompt, and waits for
another command.

Because the shell does not process command line arguments but only hands them to
the called program, the shell has no way of knowing whether a particular option or
other argument is valid for a given program. Any error or usage messages about
options or arguments come from the program itself. Some utilities ignore bad options.

EDITING THE COMMAND LINE

You can repeat and edit previous commands and edit the current command line. See
pages 139 and 314 for more information.

226 CHAPTER7 THE SHELL

Standard

output
input —| Command

Standard

error

Figure 7-3 The command does not know where standard input comes from or
where standard output and standard error go

STANDARD INPUT AND STANDARD QUTPUT

Standard output is a place that a program can send information, such as text. The
program never “knows” where the information it sends to standard output is going
(Figure 7-3). The information can go to a printer, an ordinary file, or the screen.
The following sections show that by default the shell directs standard output from a
command to the screen! and describe how you can cause the shell to redirect this
output to another file.

Standard input is a place that a program gets information from. As with standard
output the program never “knows” where the information came from. The follow-
ing sections also explain how to redirect standard input to a command so that it
comes from an ordinary file instead of from the keyboard (the default).

In addition to standard input and standard output, a running program normally has
a place to send error messages: standard error. Refer to page 280 for more informa-
tion on handling standard error.

THE SCREEN AS A FILE

Chapter 6 introduced ordinary files, directory files, and hard and soft links. Linux
has an additional type of file: a device file. A device file resides in the Linux file
structure, usually in the /dev directory, and represents a peripheral device, such as a
terminal emulator window, screen, printer, or disk drive.

The device name that the who utility displays after your username is the filename of
your screen. For example, when who displays the device name pts/4, the pathname
of your screen is /dev/pts/4. When you work with multiple windows, each window
has its own device name. You can also use the tty utility to display the name of the
device that you give the command from. Although you would not normally have
occasion to do so, you can read from and write to this file as though it were a text
file. Writing to it displays what you wrote on the screen; reading from it reads what
you entered on the keyboard.

1. The term screen is used throughout this book to mean screen, terminal emulator window, or worksta-
tion. Screen refers to the device that you see the prompt and messages displayed on.

STANDARD INPUT AND STANDARD OuTPUT 227

chsh: changes your login shell

The person who sets up your account determines which shell you will use when you first log in
on the system or when you open a terminal emulator window in a GUI environment. You can run
any shell you like once you are logged in. Enter the name of the shell you want to use (bash, tcsh,
or another shell) and press RETURN; the next prompt will be that of the new shell. Give an exit com-
mand to return to the previous shell. Because shells you call in this manner are nested (one runs
on top of the other), you will be able to log out only from your original shell. When you have nested
several shells, keep giving exit commands until you reach your original shell. You will then be able
to log out.

Use the chsh utility when you want to change your login shell permanently. First give the com-
mand chsh. Then in response to the prompts enter your password and the absolute pathname of
the shell you want to use (/bin/bash, /bin/tcsh, or the pathname of another shell). When you
change your login shell in this manner using a terminal emulator (page 114) under a GUI, subse-
quent terminal emulator windows will not reflect the change until you log out of the system and
log back in.

THE KEYBOARD AND SCREEN AS STANDARD INPUT
AND STANDARD QUTPUT

cat

When you first log in, the shell directs standard output of your commands to the
device file that represents your screen (Figure 7-4). Directing output in this manner
causes it to appear on your screen. The shell also directs standard input to come

from the same file, so that your commands receive as input anything you type on
the keyboard.

The cat utility provides a good example of the way the keyboard and the screen
function as standard input and standard output, respectively. When you use cat, it
copies a file to standard output. Because the shell directs standard output to the
screen, cat displays the file on the screen.

Standard
input

Standard
output

Command

Figure 7-4 By default, standard input comes from the keyboard and
standard output goes to the screen

228 CHAPTER7

THE SHELL

CONTROL-D
signals EOF

$ cat

This is a 1ine of text.

This is a line of text.

Cat keeps copying lines of text

Cat keeps copying lines of text

until you press CONTROL-D at the beginning
until you press CONTROL-D at the beginning
of a line.

of a line.

CONTROL-D

$

Figure 7-5 The cat utility copies standard input to standard output

Up to this point cat has taken its input from the filename (argument) you specified
on the command line. When you do not give cat an argument (that is, when you
give the command cat followed immediately by RETURN), cat takes its input from stan-
dard input. Thus, when called without an argument, cat copies standard input to
standard output, one line at a time.

To see how cat works, type cat and press RETURN in response to the shell prompt.
Nothing happens. Enter a line of text and press RETURN. The same line appears just
under the one you entered. The cat utility is working. Because the shell associates
cat’s standard input with the keyboard and cat’s standard output with the screen,
when you type a line of text cat copies the text from standard input (the keyboard)
to standard output (the screen). This exchange is shown in Figure 7-5.

The cat utility keeps copying text until you enter CONTROL-D on a line by itself. Pressing
CONTROL-D sends an EOF (end of file) signal to cat to indicate that it has reached the
end of standard input and there is no more text for it to copy. The cat utility then
finishes execution and returns control to the shell, which displays a prompt.

REDIRECTION

The term redirection encompasses the various ways you can cause the shell to alter
where standard input of a command comes from and where standard output goes
to. By default the shell associates standard input and standard output of a com-
mand with the keyboard and the screen as mentioned earlier. You can cause the
shell to redirect standard input or standard output of any command by associating
the input or output with a command or file other than the device file representing
the keyboard or the screen. This section demonstrates how to redirect input from
and output to ordinary text files and utilities.

REDIRECTING STANDARD OUTPUT

The redirect output symbol (>) instructs the shell to redirect the output of a com-
mand to the specified file instead of to the screen (Figure 7-6). The format of a
command line that redirects output is

command [arguments]| > filename

STANDARD INPUT AND STANDARD OuTPUT 229

Standard
input

Standard
output

Figure 7-6 Redirecting standard output

where command is any executable program (such as an application program or a
utility), arguments are optional arguments, and filename is the name of the ordi-
nary file the shell redirects the output to.

Figure 7-7 uses cat to demonstrate output redirection. This figure contrasts with
Figure 7-3 on page 226, where both standard input and standard output are associ-
ated with the keyboard and the screen. The input in Figure 7-7 comes from the key-
board. The redirect output symbol on the command line causes the shell to associate
cat’s standard output with the sample.txt file specified on the command line.

After giving the command and typing the text shown in Figure 7-7, the sample.txt
file contains the text you entered. You can use cat with an argument of sample.txt to
display this file. The next section shows another way to use cat to display the file.

Redirecting output can destroy a file |

Use caution when you redirect output to a file. If the file exists, the shell will overwrite it and
destroy its contents. For more information see the tip “Redirecting output can destroy a file [I” on
page 232.

Figure 7-7 shows that redirecting the output from cat is a handy way to create a file
without using an editor. The drawback is that once you enter a line and press RETURN,
you cannot edit the text. While you are entering a line, the erase and kill keys work
to delete text. This procedure is useful for making short, simple files.

$ cat > sample.txt

This text is being entered at the keyboard and
cat is copying it to a file.

Press CONTROL-D to indicate the

end of file.

CONTROL-D

$

Figure 7-7 cat with its output redirected

230 CHAPTER7

THE SHELL

Utilities that take
input from a file or
standard input

$ cat stationery
2,000 sheets letterhead ordered: 10/7/05

$ cat tape
1 box masking tape ordered: 10/14/05
5 boxes filament tape ordered: 10/28/05
$ cat pens
12 doz. black pens ordered: 10/4/05

$ cat stationery tape pens > supply_orders

$ cat supply_orders
2,000 sheets letterhead ordered: 10/7/05

1 box masking tape ordered: 10/14/05
5 boxes filament tape ordered: 10/28/05
12 doz. black pens ordered: 10/4/05
$

Figure 7-8 Using cat to catenate files

Figure 7-8 shows how to use cat and the redirect output symbol to catenate (join
one after the other—the derivation of the name of the cat utility) several files into
one larger file. The first three commands display the contents of three files:
stationery, tape, and pens. The next command shows cat with three filenames as
arguments. When you call it with more than one filename, cat copies the files, one at
a time, to standard output. In this case standard output is redirected to the file
supply_orders. The final cat command shows that supply_orders contains the con-
tents of all three files.

REDIRECTING STANDARD INPUT

Just as you can redirect standard output, so you can redirect standard input. The
redirect input symbol (<) instructs the shell to redirect a command’s input to come
from the specified file instead of from the keyboard (Figure 7-9). The format of a
command line that redirects input is

command [arguments] < filename

where command is any executable program (such as an application program or a
utility), arguments are optional arguments, and filename is the name of the ordi-
nary file the shell redirects the input from.

Figure 7-10 shows cat with its input redirected from the supply_orders file that was
created in Figure 7-8 and standard output going to the screen. This setup causes cat
to display the sample file on the screen. The system automatically supplies an EOF
(end of file) signal at the end of an ordinary file.

Giving a cat command with input redirected from a file yields the same result as giv-
ing a cat command with the filename as an argument. The cat utility is a member of
a class of Linux utilities that function in this manner. Other members of this class of
utilities include lpr, sort, and grep. These utilities first examine the command line

STANDARD INPUT AND STANDARD OuTPUT 231

Standard
input

Command

Figure 7-9 Redirecting standard input

that you use to call them. If you include a filename on the command line, the utility
takes its input from the file you specify. If you do not specify a filename, the utility
takes its input from standard input. It is the utility or program—not the shell or
operating system—that functions in this manner.

noclobber: AvoiDsS OVERWRITING FILES

The shell provides a feature called noclobber that stops you from inadvertently
overwriting an existing file using redirection. When you enable this feature by set-
ting the noclobber variable and then attempt to redirect output to an existing file,
the shell displays an error message and does not execute the command. If the pre-
ceding examples result in one of the following messages, the noclobber feature has
been set. The following examples set noclobber, attempt to redirect the output from
echo into an existing file, and then unset noclobber:

$ set -o noclobber

$ echo "hi there" > tmp

bash: tmp: Cannot overwrite existing file
$ set +o0 noclobber

$ echo "hi there" > tmp

$

You can override noclobber by putting a pipe symbol after the symbol you use for
redirecting output (>l).

In the following example, the user first creates a file named a by redirecting the out-
put of date to the file. Next the user sets the noclobber variable and tries redirecting

$ cat < supply_orders
2,000 sheets letterhead ordered: 10/7/05

1 box masking tape ordered: 10/14/05
5 boxes filament tape ordered: 10/28/05
12 doz. black pens ordered: 10/4/05

Figure 7-10 cat with its input redirected

232 CHAPTER7 THE SHELL

output to a again. The shell returns an error message. Then the user tries the same
thing but using a pipe symbol after the redirect symbol. This time the shell allows
the user to overwrite the file. Finally, the user unsets noclobber (using a plus sign in
place of the hyphen) and verifies that it is no longer set.

$ date > a

$ set -o noclobber

$ date > a

bash: a: Cannot overwrite existing file
$ date >| a

$ set +o0 noclobber

$ date > a

Redirecting output can destroy a file I

Depending on which shell you are using and how your environment has been set up, a command
such as the following may give you undesired results:

$ cat orange pear > orange

cat: orange: input file is output file
Although cat displays an error message, the shell goes ahead and destroys the contents of the
existing orange file. The new orange file will have the same contents as pear because the first
action the shell takes when it sees the redirection symbol (>) is to remove the contents of the orig-
inal orange file. If you want to catenate two files into one, use cat to put the two files into a tem-
porary file and then use mv to rename this third file:

$ cat orange pear > temp

$ mv temp orange
What happens in the next example can be even worse. The user giving the command wants to
search through files a, b, and ¢ for the word apple and redirect the output from grep (page 151)
to the file a.output. Unfortunately the user enters the filename as a output, omitting the period and
inserting a SPACE in its place:

$ grep apple a b ¢ > a output

grep: output: No such file or directory
The shell obediently removes the contents of a and then calls grep. The error message may take
a moment to appear, giving you a sense that the command is running correctly. Even after you see
the error message, it may take a while to realize that you destroyed the contents of a.

APPENDING STANDARD OUTPUT TO A FILE

The append output symbol (>>) causes the shell to add new information to the end
of a file, leaving any existing information intact. This symbol provides a convenient
way of catenating two files into one. The following commands demonstrate the
action of the append output symbol. The second command accomplishes the cate-
nation described in the preceding caution box:

$ cat orange

this is orange

§ cat pear >> orange
$ cat orange

this is orange

this is pear

STANDARD INPUT AND STANDARD OuTPUT 233

You first see the contents of the orange file. Next the contents of the pear file is
added to the end of (catenated with) the orange file. The final cat shows the result.

Do not trust noclobber

Appending output is simpler than the two-step procedure described in the preceding caution box
but you must be careful to include both greater than signs. If you accidentally use only one and
the noclobber feature is not on, you will overwrite the orange file. Even if you have the noclobber
feature turned on, it is a good idea to keep backup copies of files you are manipulating in these
ways in case you make a mistake.

Although it protects you from making an erroneous redirection, noclobber does not stop you from
overwriting an existing file using cp or mv. These utilities include the —i (interactive) option that
helps protect you from this type of mistake by verifying your intentions when you try to overwrite
a file. For more information see the tip “cp can destroy a file” on page 150.

The next example shows how to create a file that contains the date and time (the
output from date), followed by a list of who is logged in (the output from who). The
first line in Figure 7-11 redirects the output from date to the file named whoson.
Then cat displays the file. Next the example appends the output from who to the
whoson file. Finally cat displays the file containing the output of both utilities.

/dev/null: MAKING DATA DISAPPEAR

The /dev/null device is a data sink, commonly referred to as a bit bucket. You can
redirect output that you do not want to keep or see to /dev/null. The output disap-
pears without a trace:

$ echo "hi there" > /dev/null
$

When you read from /dev/null, you get a null string. Give the following cat command
to truncate a file named messages to zero length while preserving the ownership and
permissions of the file:

$ 1s -1 messages

-rw-r--r-- 1 alex pubs 25315 Oct 24 10:55 messages
$ cat /dev/null > messages

$ 1s -1 messages

-rw-r--r-- 1 alex pubs @ Oct 24 11:02 messages

$ date > whoson

$ cat whoson

Thu Mar 27 14:31:18 PST 2008
$ who >> whoson

$ cat whoson

Thu Mar 27 14:31:18 PST 2008

sam console Mar 27 05:00(:0)

alex pts/4 Mar 27 12:23(:0.0)

alex pts/5 Mar 27 12:33(:0.0)

jenny pts/7 Mar 26 08:45 (bravo.example.com)

Figure 7-11 Redirecting and appending output

234 CHAPTER7 THE SHELL

PIPES

tr

The shell uses a pipe to connect standard output of one command directly to stan-
dard input of another command. A pipe (sometimes referred to as a pipeline) has
the same effect as redirecting standard output of one command to a file and then
using that file as standard input to another command. A pipe does away with sepa-
rate commands and the intermediate file. The symbol for a pipe is a vertical bar (I).
The syntax of a command line using a pipe is

command_a [arguments| | command_b [argumentis]

The preceding command line uses a pipe to generate the same result as the following
group of command lines:

command_a [arguments| > temp
command_b [arguments] < temp
rm temp

In the preceding sequence of commands, the first line redirects standard output
from command_a to an intermediate file named temp. The second line redirects
standard input for command_b to come from temp. The final line deletes temp. The
command using a pipe is not only easier to type, but is generally more efficient
because it does not create a temporary file.

You can use a pipe with any of the Linux utilities that accept input either from a file
specified on the command line or from standard input. You can also use pipes with
commands that accept input only from standard input. For example, the tr (trans-
late) utility takes its input from standard input only. In its simplest usage tr has the
following format:

tr stringl string2

The tr utility accepts input from standard input and looks for characters that match
one of the characters in stringl. Upon finding a match, tr translates the matched
character in string1 to the corresponding character in string2. (The first character in
string1 translates into the first character in string2, and so forth.) The tr utility
sends its output to standard output. In both of the following examples, tr displays
the contents of the abstract file with the letters a, b, and ¢ translated into A, B, and
C, respectively:

$ cat abstract | tr abc ABC
$ tr abc ABC < abstract

$ 1s > temp
$ 1pr temp
$ rm temp
or

$ 1s | 1pr

Figure 7-12 A pipe

STANDARD INPUT AND STANDARD OuTPUT 235

lpr

$ who > temp
$ sort < temp

alex pts/4 Mar 24 12:23
alex pts/5 Mar 24 12:33
jenny pts/7 Mar 23 08:45
sam console Mar 24 05:00
$ rm temp

Figure 7-13 Using a temporary file to store intermediate results

The tr utility does not change the contents of the original file; it cannot change the
original file because it does not “know” the source of its input.

The lpr (line printer) utility also accepts input from either a file or standard input.
When you type the name of a file following Ipr on the command line, it places that
file in the print queue. When you do not specify a filename on the command line, Ipr
takes input from standard input. This feature enables you to use a pipe to redirect
input to Ipr. The first set of commands in Figure 7-12 shows how you can use Is and
lpr with an intermediate file (temp) to send a list of the files in the working directory
to the printer. If the temp file exists, the first command overwrites its contents. The
second set of commands sends the same list (with the exception of temp) to the
printer using a pipe.

The commands in Figure 7-13 redirect the output from the who utility to temp and
then display this file in sorted order. The sort utility (page 153) takes its input from
the file specified on the command line or, when a file is not specified, from standard
input and sends its output to standard output. The sort command line in
Figure 7-13 takes its input from standard input, which is redirected (<) to come
from temp. The output that sort sends to the screen lists the users in sorted (alpha-
betical) order.

Because sort can take its input from standard input or from a filename on the com-
mand line, omitting the < symbol from Figure 7-13 yields the same result.

Figure 7-14 achieves the same result without creating the temp file. Using a pipe the
shell redirects the output from who to the input of sort. The sort utility takes input
from standard input because no filename follows it on the command line.

When many people are using the system and you want information about only one of
them, you can send the output from who to grep (page 151) using a pipe. The grep util-
ity displays the line containing the string you specify—sam in the following example:

$ who | grep 'sam'
sam console Mar 24 05:00

$ who | sort

alex pts/4 Mar 24 12:23
alex pts/5 Mar 24 12:33
jenny pts/7 Mar 23 08:45
sam console Mar 24 05:00

Figure 7-14 A pipe doing the work of a temporary file

236 CHAPTER7 THE SHELL

Another way of handling output that is too long to fit on the screen, such as a list of
files in a crowded directory, is to use a pipe to send the output through less or more
(both on page 148).

$ 1s | less

The less utility displays text one screen at a time. To view another screen, press the
SPACE bar. To view one more line, press RETURN. Press h for help and q to quit.

Some utilities change the format of their output when you redirect it. Compare the
output of Is by itself and when you send it through a pipe to less.

FILTERS

A filter is a command that processes an input stream of data to produce an output
stream of data. A command line that includes a filter uses a pipe to connect stan-
dard output of one command to the filter’s standard input. Another pipe connects
the filter’s standard output to standard input of another command. Not all utilities
can be used as filters.

In the following example, sort is a filter, taking standard input from standard output
of who and using a pipe to redirect standard output to standard input of lpr. This
command line sends the sorted output of who to the printer:

$ who | sort | 1pr

The preceding example demonstrates the power of the shell combined with the ver-
satility of Linux utilities. The three utilities who, sort, and lpr were not specifically
designed to work with each other, but they all use standard input and standard out-
put in the conventional way. By using the shell to handle input and output, you can
piece standard utilities together on the command line to achieve the results you want.

tee: SENDS OUTPUT IN TwO DIRECTIONS

The tee utility copies its standard input both to a file and to standard output. The
utility is aptly named: It takes a single input and sends the output in two directions.
In Figure 7-15 the output of who is sent via a pipe to standard input of tee. The tee
utility saves a copy of standard input in a file named who.out and also sends a copy
to standard output. Standard output of tee goes via a pipe to standard input of grep,
which displays lines containing the string sam.

$ who | tee who.out | grep sam

sam console Mar 24 05:00
$ cat who.out

sam console Mar 24 05:00
alex pts/4 Mar 24 12:23
alex pts/5 Mar 24 12:33
jenny pts/7 Mar 23 08:45

Figure 7-15 Using tee

RUNNING A PROGRAM IN THE BACKGROUND 237

RUNNING A PROGRAM IN THE BACKGROUND

Foreground

Jobs

Job number,
PID number

CONTROL-Z

In all the examples so far in this book, commands were run in the foreground.
When you run a command in the foreground, the shell waits for it to finish before
giving you another prompt and allowing you to continue. When you run a com-
mand in the background, you do not have to wait for the command to finish before
you start running another command.

A job is a series of one or more commands that can be connected by pipes. You can
have only one foreground job in a window or on a screen, but you can have many
background jobs. By running more than one job at a time, you are using one of
Linux’s important features: multitasking. Running a command in the background
can be useful when the command will run for a long time and does not need super-
vision. It leaves the screen free so that you can use it for other work. Of course,
when you are using a GUI, you can open another window to run another job.

To run a command in the background, type an ampersand (&) just before the RETURN
that ends the command line. The shell assigns a small number to the job and displays
this job number between brackets. Following the job number, the shell displays the
process identification (PID) number—a larger number assigned by the operating
system. Each of these numbers identifies the command running in the background.
Then the shell displays another prompt and you can enter another command. When
the background job finishes running, the shell displays a message giving both the job
number and the command line used to run the command.

The next example runs in the background and sends its output through a pipe to Ipr,
which sends it to the printer.

$1s -1 | Tpr &
[1] 22092
$

The [1] following the command line indicates that the shell has assigned job number
1 to this job. The 22092 is the PID number of the first command in the job. When
this background job completes execution, you see the message

[1]+ Done 1s -1 | 1pr

(In place of Is -1, the shell may display something similar to Is ——color=tty -I. This
difference is due to the fact that Is is aliased [page 328] to s ——color=tty.)

MOVING A JOB FROM THE FOREGROUND TO THE BACKGROUND
You can suspend a foreground job (stop it from running) by pressing the suspend
key, usually contrRoL-Z. The shell then stops the process and disconnects standard
input from the keyboard. You can put a suspended job in the background and
restart it by using the bg command followed by the job number. You do not need to
use the job number when there is only one stopped job.

238 CHAPTER7 THE SHELL

Determining a PID
number with ps

Only the foreground job can take input from the keyboard. To connect the key-
board to a program running in the background, you must bring it into the fore-
ground. Type fg without any arguments when only one job is in the background.
When more than one job is in the background, type fg, or a percent sign (%), fol-
lowed by the number of the job you want to bring into the foreground. The shell
displays the command you used to start the job (promptme in the following exam-
ple), and you can enter any input the program requires to continue:

bash § fg 1
promptme

Redirect the output of a job you run in the background to keep it from interfering
with whatever you are doing on the screen. Refer to “Separating and Grouping
Commands” on page 286 for more detail about background tasks.

kill: ABORTING A BACKGROUND JOB

The interrupt key (usually CONTROL-C) cannot abort a process you are running in the
background; you must use kill (page 522) for this purpose. Follow kill on the com-
mand line with either the PID number of the process you want to abort or a percent
sign (%) followed by the job number.

If you forget the PID number, you can use the ps (process status) utility (page 310)
to display it. The following example runs a tail —f outfile command (the —f option
causes tail to watch outfile and display new lines as they are written to the file) as a
background job, uses ps to display the PID number of the process, and aborts the
job with Kill:

$ tail -f outfile &

[1] 18228

$ ps | grep tail

18228 pts/4 00:00:00 tail

$ kill 18228

[1]+ Terminated tail -f outfile
$

If you forget the job number, you can use the jobs command to display a list of job
numbers. The next example is similar to the previous one but uses the job number
instead of the PID number to kill the job. Sometimes the message saying that the job
is terminated does not appear until you press RETURN after the RETURN that ends the kill
command:

$ tail -f outfile &

[1] 18236

$ bigjob &

[2] 18237

$ jobs

[1]- Running tail -f outfile &
[2]+ Running bigjob &

$ kill %1

$ RETURN

[1]- Terminated tail -f outfile
$

FILENAME GENERATION/PATHNAME EXPANSION 239

FILENAME GENERATION/PATHNAME EXPANSION

Wildcards, globbing When you give the shell abbreviated filenames that contain special characters, also
called metacharacters, the shell can generate filenames that match the names of
existing files. These special characters are also referred to as wildcards because they
act as the jokers do in a deck of cards. When one of these characters appears in an
argument on the command line, the shell expands that argument in sorted order
into a list of filenames and passes the list to the program that the command line
calls. Filenames that contain these special characters are called ambiguous file refer-
ences because they do not refer to any one specific file. The process that the shell
performs on these filenames is called pathname expansion or globbing.

Ambiguous file references refer to a group of files with similar names quickly, sav-
ing you the effort of typing the names individually. They can also help you find a
file whose name you do not remember in its entirety. If no filename matches the
ambiguous file reference, the shell generally passes the unexpanded reference—special
characters and all—to the command.

THE ? SPECIAL CHARACTER

The question mark (?) is a special character that causes the shell to generate file-
names. It matches any single character in the name of an existing file. The following
command uses this special character in an argument to the lpr utility:

$ 1pr memo?

The shell expands the memo? argument and generates a list of files in the working
directory that have names composed of memo followed by any single character. The
shell then passes this list to lpr. The Ipr utility never “knows” that the shell generated
the filenames it was called with. If no filename matches the ambiguous file refer-
ence, the shell passes the string itself (memo?) to lpr or, if it is set up to do so, passes
a null string (see nullglob on page 337).

The following example uses Is first to display the names of all files in the working
directory and then to display the filenames that memo? matches:

$ 1s

mem memol2 memo9 memoalex newmemo5
memo memo5 memoa memos

$ 1s memo?

memo5 memo9 memoa memos

The memo? ambiguous file reference does not match mem, memo, memo12,
memoalex, or newmemo5. You can also use a question mark in the middle of an
ambiguous file reference:

$ 1s

7may4report may4report mayqreport may_report
mayl4report may4report.79 mayreport may.report
$ 1s may?report

may.report may4report may_report mayqreport

240 CHAPTER7 THE SHELL

To practice generating filenames, you can use echo and Is. The echo utility displays
the arguments that the shell passes to it:

$ echo may?report
may.report may4report may_report mayqreport

The shell first expands the ambiguous file reference into a list of all files in the
working directory that match the string may?report and then passes this list to echo,
as though you had entered the list of filenames as arguments to echo. Next echo dis-
plays the list of filenames.

A question mark does not match a leading period (one that indicates a hidden file-
name; see page 188). When you want to match filenames that begin with a period,
you must explicitly include the period in the ambiguous file reference.

THE * SPECIAL CHARACTER

The asterisk (%) performs a function similar to that of the question mark but
matches any number of characters, including zero characters, in a filename. The fol-
lowing example shows all of the files in the working directory and then shows three
commands that display all the filenames that begin with the string memo, end with
the string mo, and contain the string alx:

$1s

amemo memo memoalx.0620 memosally user.memo
mem memo.0612 memoalx.keep sallymemo

memalx memoa memorandum typescript

$ echo memo=:

memo memo.0612 memoa memoalx.0620 memoalx.keep memorandum memosally
$ echo *mo

amemo memo sallymemo user.memo

$ echo =alx:

memalx memoalx.0620 memoalx.keep

The ambiguous file reference memo* does not match amemo, mem, sallymemo, or
user.memo. Like the question mark, an asterisk does 7ot match a leading period in a
filename.

The —a option causes Is to display hidden filenames. The command echo * does not
display . (the working directory), .. (the parent of the working directory), .aaa, or
.profile. In contrast, the command echo .* displays only those four names:

$ 1s

aaa memo.sally sally.0612 thurs

memo.0612 report saturday

$1s -a
.aaa aaa memo.sally sally.0612 thurs
.profile memo.0612 report saturday

$ echo =

aaa memo.0612 memo.sally report sally.0612 saturday thurs

$ echo .

.aaa .profile

FILENAME GENERATION/PATHNAME EXPANSION 241

In the following example .p* does not match memo.0612, private, reminder, or
report. Next the Is .* command causes Is to list .private and .profile in addition to
the contents of the . directory (the working directory) and the .. directory (the par-
ent of the working directory). When called with the same argument, echo displays
the names of files (including directories) in the working directory that begin with a
dot (.), but not the contents of directories.

$1s -a
.private memo.0612 reminder
.. .profile private report
$ echo .p=*
.private .profile
$1s .=

.private .profile

memo.0612 private reminder report

$ echo .=
.private .profile

You can take advantage of ambiguous file references when you establish conven-
tions for naming files. For example, when you end all text filenames with .txt, you
can reference that group of files with *.txt. The next command uses this convention
to send all the text files in the working directory to the printer. The ampersand
causes Ipr to run in the background.

$ Tpr =.txt &

THE [] SPECIAL CHARACTERS

A pair of brackets surrounding a list of characters causes the shell to match file-
names containing the individual characters. Whereas memo? matches memo fol-
lowed by any character, memo[17a] is more restrictive, and matches only memol,
memo7, and memoa. The brackets define a character class that includes all the
characters within the brackets. (GNU calls this a character list; a GNU character
class is something different.) The shell expands an argument that includes a charac-
ter-class definition, by substituting each member of the character class, one at a
time, in place of the brackets and their contents. The shell then passes the list of
matching filenames to the program it is calling.

Each character-class definition can replace only a single character within a filename.
The brackets and their contents are like a question mark that substitutes only the
members of the character class.

The first of the following commands lists the names of all the files in the working
directory that begin with a, e, i, 0, or u. The second command displays the contents
of the files named page2.txt, page4.txt, page6.txt, and page8.txt.

242 CHAPTER7 THE SHELL

optional

$ echo [aeiou]=

$ less page[2468].txt

A hyphen within brackets defines a range of characters within a character-class def-
inition. For example, [6-9] represents [6789], [a—z] represents all lowercase letters

in English, and [a—zA-Z] represents all letters, both uppercase and lowercase, in
English.

The following command lines show three ways to print the files named part0,
partl, part2, part3, and part5. Each of these command lines causes the shell to call
Ipr with five filenames:

$ T1pr part@ partl part2 part3 part5
$ T1pr part[01235]
$ 1pr part[0-35]

The first command line explicitly specifies the five filenames. The second and third
command lines use ambiguous file references, incorporating character-class defini-
tions. The shell expands the argument on the second command line to include all
files that have names beginning with part and ending with any of the characters in
the character class. The character class is explicitly defined as 0, 1, 2, 3, and 5. The
third command line also uses a character-class definition but defines the character
class to be all characters in the range 0-3 plus 5.

The following command line prints 39 files, part0 through part38:
$ 1pr part[0-9] part[12][0-9] part3[0-8]

The next two examples list the names of some of the files in the working directory.
The first lists the files whose names start with a through m. The second lists files
whose names end with x, y, or z.

$ echo [a-m]:

$ echo *[x-z]

When an exclamation point (!) or a caret (A) immediately follows the opening
bracket ([) that defines a character class, the string enclosed by the brackets matches
any character not between the brackets. Thus [*ab]* matches any filename that
does not begin with a or b.

The following examples show that *[*ab] matches filenames that do not end with
the letters a or b and that [b-d]* matches filenames that begin with b, ¢, or d.

$ 1s
aa ab ac ad ba bb bc bd cc dd

BUILTINS 243

BUILTINS

Listing bash
builtins

$ 1s =[Aab]

ac ad bc bd cc ddcc dd
$ 1s [b-d]=

ba bb bc bd cc dd

You can match a hyphen (=) or a closing bracket (]) by placing it immediately before
the final closing bracket.

The next example demonstrates that the Is utility cannot interpret ambiguous file
references. First Is is called with an argument of ?old. The shell expands ?old into a
matching filename, hold, and passes that name to Is. The second command is the
same as the first, except the ? is quoted (refer to “Special Characters” on page 146).
The shell does not recognize this question mark as a special character and passes it
on to Is. The Is utility generates an error message saying that it cannot find a file
named 2old (because there is no file named ?old).

$ 1s ?0l1d

hold

$ 1s \?o0ld

1s: ?0ld: No such file or directory

Like most utilities and programs, Is cannot interpret ambiguous file references; that
work is left to the shell.

The shell expands ambiguous file references

The shell does the expansion when it processes an ambiguous file reference, not the program that
the shell runs. In the examples in this section, the utilities (Is, cat, echo, Ipr) never see the ambig-
uous file references. The shell expands the ambiguous file references and passes a list of ordinary
filenames to the utility. In the previous examples, echo shows this to be true because it simply
displays its arguments; it never displays the ambiguous file reference.

A builtin is a utility (also called a command) that is built into a shell. Each of the
shells has its own set of builtins. When it runs a builtin, the shell does not fork a
new process. Consequently builtins run more quickly and can affect the environ-
ment of the current shell. Because builtins are used in the same way as utilities, you
will not typically be aware of whether a utility is built into the shell or is a stand-
alone utility.

The echo utility is a shell builtin. The shell always executes a shell builtin before try-
ing to find a command or utility with the same name. See page 444 for an in-depth
discussion of builtin commands and page 457 for a list of bash builtins.

To get a complete list of bash builtins, give the command info bash builtin. To dis-
play a page with more information on each builtin, move the cursor to one of the
lines listing a builtin command and press RETURN. Alternatively, after typing info

244 CHAPTER7 THE SHELL

bash, give the command /builtin to search the bash documentation for the string
builtin. The cursor will rest on the word Builtin in a menu; press RETURN to display
the builtins menu.

Because bash was written by GNU, the info page has better information than does
the man page. If you want to read about builtins in the man page, give the command
man bash and then search for the section on builtins with the command /ASHELL
BUILTIN COMMANDS (search for a line that begins with SHELL . . .).

CHAPTER SUMMARY

The shell is the Linux command interpreter. It scans the command line for proper
syntax, picking out the command name and any arguments. The first argument is
argument one, the second is argument two, and so on. The name of the command
itself is argument zero. Many programs use options to modify the effects of a com-
mand. Most Linux utilities identify an option by its leading one or two hyphens.

When you give it a command, the shell tries to find an executable program with the
same name as the command. When it does, the shell executes the program. When it
does not, the shell tells you that it cannot find or execute the program. If the com-
mand is a simple filename, the shell searches the directories given in the variable
PATH in an attempt to locate the command.

When it executes a command, the shell assigns one file to the command’s standard
input and another file to its standard output. By default the shell causes a com-
mand’s standard input to come from the keyboard and its standard output to go to
the screen. You can instruct the shell to redirect a command’s standard input from
or standard output to any file or device. You can also connect standard output of
one command to standard input of another command using a pipe. A filter is a
command that reads its standard input from standard output of one command and
writes its standard output to standard input of another command.

When a command runs in the foreground, the shell waits for it to finish before it
displays a prompt and allows you to continue. When you put an ampersand (&) at
the end of a command line, the shell executes the command in the background and
displays another prompt immediately. Run slow commands in the background
when you want to enter other commands at the shell prompt. The jobs builtin dis-
plays a list of jobs and includes the job number of each.

The shell interprets special characters on a command line to generate filenames.
A question mark represents any single character, and an asterisk represents zero
or more characters. A single character may also be represented by a character
class: a list of characters within brackets. A reference that uses special characters
(wildcards) to abbreviate a list of one or more filenames is called an ambiguous
file reference.

EXERCISES 245

A builtin is a utility that is built into a shell. Each shell has its own set of builtins.
When it runs a builtin, the shell does not fork a new process. Consequently builtins
run more quickly and can affect the environment of the current shell.

UTILITIES AND BUILTINS INTRODUCED IN THIS CHAPTER

Table 7-1 lists the utilities introduced in this chapter.

New utilities
Utility Function
tr Maps one string of characters into another (page 234)
tee Sends standard input to both a file and standard output (page 236)
bg Moves a process into the background (page 237)
fg Moves a process into the foreground (page 238)
jobs Displays a list of currently running jobs (page 238)

EXERCISES

1. What does the shell ordinarily do while a command is executing? What
should you do if you do not want to wait for a command to finish before
running another command?

2. Using sort as a filter, rewrite the following sequence of commands:

$ sort Tist > temp
$ 1pr temp
$ rm temp

3. What is a PID number? Why are these numbers useful when you run pro-
cesses in the background? Which utility displays the PID numbers of the
commands you are running?

4. Assume that the following files are in the working directory:

$ 1s
intro notesb ref2 sectionl section3 section4b
notesa refl ref3 section2 section4a sentrev

Give commands for each of the following, using wildcards to express file-
names with as few characters as possible.

a. List all files that begin with section.

b. List the section1, section2, and section3 files only.

246 CHAPTER7 THE SHELL

c. List the intro file only.
d. List the sectionl1, section3, refl, and ref3 files.

5. Refer to the documentation of utilities in the man pages to determine
which commands will

a. Output the number of lines in the standard input that contain the word
aorA.

b. Output only the names of the files in the working directory that contain
the pattern $(.

c. List the files in the working directory in their reverse alphabetical order.
d. Send a list of files in the working directory to the printer, sorted by size.
6. Give a command to

a. Redirect the standard output from a sort command into a file named
phone_list. Assume that the input file is named numbers.

b. Translate all occurrences of the characters [and { to the character (, and
all occurrences of the characters] and } to the character) in the file
permdemos.c. (Hint: Refer to the tr man page.)

c. Create a file named book that contains the contents of two other files:
partl and part2.

7. The lpr and sort utilities accept input either from a file named on the com-
mand line or from standard input.

a. Name two other utilities that function in a similar manner.

b. Name a utility that accepts its input only from standard input.
8. Give an example of a command that uses grep

a. With both input and output redirected.

b. With only input redirected.

c. With only output redirected.

d. Within a pipe.

In which of the preceding is grep used as a filter?

9. Explain the following error message. What filenames would a subsequent
Is display?

$ 1s

abc abd abe abf abg abh

$ rm abc ab+

rm: cannot remove 'abc': No such file or directory

ADVANCED EXERCISES 247

ADVANCED EXERCISES

10. When you use the redirect output symbol (>) with a command, the shell
creates the output file immediately, before the command is executed. Dem-
onstrate that this is true.

11. In experimenting with shell variables, Alex accidentally deletes his PATH
variable. He decides that he does not need the PATH variable. Discuss
some of the problems he may soon encounter and explain the reasons for
these problems. How could he easily return PATH to its original value?

12. Assume that your permissions allow you to write to a file but not to delete it.
a. Give a command to empty the file without invoking an editor.

b. Explain how you might have permission to modify a file that you can-
not delete.

13. If you accidentally create a filename that contains a nonprinting character,
such as a CONTROL character, how can you rename the file?

14. Why does the noclobber variable not protect you from overwriting an
existing file with cp or mv?

15. Why do command names and filenames usually not have embedded SPACEs?
How would you create a filename containing a SPACE? How would you
remove it? (This is a thought exercise, not recommended practice. If you
want to experiment, create and work in a directory that contains only
your experimental file.)

16. Create a file named answer and give the following command:
$ > answers.0102 < answer cat

Explain what the command does and why. What is a more conventional
way of expressing this command?

This page intentionally left blank

PART III

DIGGING INTO UBUNTU LINUX

CHAPTER 8
LiINux GUIs: X AND GNOME 251

CHAPTER 9
THE BOURNE AGAIN SHELL 275

CHAPTER 10
NETWORKING AND THE INTERNET 353

CHAPTER 11
PROGRAMMING THE BOURNE AGAIN SHELL 395

249

This page intentionally left blank

IN THIS CHAPTER

X Window System

Starting X from a Character-

Based Display

Remote Computing and Local

Displayscoovvennn..

Window Managers

The Nautilus File Browser

Window
GNOME Utilities
Run Application Window

GNOME Terminal

Emulator/Shell

LINUX GUIs: X AND
GNOME

This chapter covers the Linux graphical user interface (GUI).
It continues where Chapter 4 left off, going into more detail
about the X Window System, the basis for the Linux GUI. It
presents a brief history of GNOME and KDE and discusses
some of the problems and benefits of having two major
Linux desktop environments. The section on the Nautilus
File Browser covers the View and Side panes, the control
bars, and the menubar. The final section explores some
GNOME utilities, including the new Deskbar applet and
Terminal, the GNOME terminal emulator.

251

252 CHAPTER 8

LiNnux GUIs: X AND GNOME

XWINDOW SYSTEM

History of X

XFree86 and X.org

The X stack

The X Window System (www.x.org) was created in 1984 at the Massachusetts
Institute of Technology (MIT) by researchers working on a distributed computing
project and a campuswide distributed environment, called Project Athena. This sys-
tem was not the first windowing software to run on a UNIX system, but it was the
first to become widely available and accepted. In 1985, MIT released X (version 9)
to the public, for use without a license. Three years later, a group of vendors formed
the X Consortium to support the continued development of X, under the leadership
of MIT. By 1998, the X Consortium had become part of the Open Group. In 2001,
the Open Group released X version 11, release 6.6 (X11R6.6).

The X Window System was inspired by the ideas and features found in earlier propri-
etary window systems but is written to be portable and flexible. X is designed to run on a
workstation, typically attached to a LAN. The designers built X with the network in
mind. If you can communicate with a remote computer over a network, running an X
application on that computer and sending the results to a local display is straightforward.

Although the X protocol has remained stable for a long time, additions to it in the
form of extensions are quite common. One of the most interesting—albeit one that
has not yet made its way into production—is the Media Application Server, which
aims to provide the same level of network transparency for sound and video that X
does for simple windowing applications.

Many distributions of Linux used the XFree86 X server, which inherited its license
from the original MIT X server, through release 4.3. In early 2004, just before the
release of XFree86 4.4, the XFree86 license was changed to one that is more
restrictive and not compatible with the GPL (page 4). In the wake of this change, a
number of distributions abandoned XFree86 and replaced it with an X.org X
server that is based on a pre-release version of XFree86 4.4, which predates the
change in the XFree86 license. Ubuntu uses the X.org X server, named X; it is func-
tionally equivalent to the one distributed by XFree86 because most of the code is
the same so modules designed to work with one server work with the other.

The Linux GUI is built in layers (Figure 8-1). The bottom layer is the kernel, which
provides the basic interfaces to the hardware. On top of the kernel is the X server,
which is responsible for managing windows and drawing basic graphical primitives
such as lines and bitmaps. Rather than directly generating X commands, most pro-
grams use Xlib, the next layer, which is a standard library for interfacing with an X
server. Xlib is complicated and does not provide high-level abstractions, such as
buttons and text boxes. Rather than using Xlib directly, most programs rely on a
toolkit that provides high-level abstractions. Using a library not only makes pro-
gramming easier, but also brings consistency to applications.

In recent years, the popularity of X has grown outside the UNIX community and
extended beyond the workstation class of computers it was originally conceived for.
Today X is available for Macintosh computers as well as for PCs running Windows.

www.x.org

XWiINDOW SYSTEM 253

Client/server
environment

tip

Events

Graphical applications
GTK Qt Tk Motif ~ ther
X server

Linux kernel

Figure 8-1 The X stack

Computer networks are central to the design of X. It is possible to run an application
on one computer and display the results on a screen attached to a different computer;
the ease with which this can be done distinguishes X from other window systems
available today. Thanks to this capability, a scientist can run and manipulate a pro-
gram on a powerful supercomputer in another building or another country and view
the results on a personal workstation or laptop computer. For more information refer
to “Remote Computing and Local Displays” on page 254.

When you start an X Window System session, you set up a client/server environ-
ment. One process, called the X server, displays a desktop and windows under X.
Each application program and utility that makes a request of the X server is a client
of that server. Examples of X clients include xterm, Compiz, xclock, and such general
applications as word processing and spreadsheet programs. A typical request from a
client is to display an image or open a window.

The roles of X client and server may be counterintuitive

The terms client and server, when referring to X, have the opposite meanings of how you might
think of them intuitively: The server runs the mouse, keyboard, and display; the application pro-
gram is the client.

This disparity becomes even more apparent when you run an application program on a remote
system. You might think of the system running the program as the server and the system provid-
ing the display as the client, but in fact it is the other way around. With X, the system providing
the display is the server, and the system running the program is the client.

The server also monitors keyboard and mouse actions (events) and passes them to
the appropriate clients. For example, when you click the border of a window, the
server sends this event to the window manager (client). Characters you type into a
terminal emulation window are sent to that terminal emulator (client). The client
takes appropriate action when it receives an event—for example, making a window
active or displaying the typed character on the server.

254 CHAPTER8 LiNux GUIs: X AND GNOME

optional

USING X

Separating the physical control of the display (the server) from the processes need-
ing access to the display (the client) makes it possible to run the server on one com-
puter and the client on another computer. In general, this book discusses running
the X server and client applications on a single system. “Remote Computing and
Local Displays” describes using X in a distributed environment.

You can run xev (X event) by giving the command xev from a terminal emulator
window and then watch the information flow from the client to the server and back
again. This utility opens the Event Tester window, which has a box in it, and asks
the X server to send it events each time anything happens, such as moving the
mouse pointer, clicking a mouse button, moving the mouse pointer into the box,
typing, or resizing the window. The xev utility displays information about each
event in the window you opened it from. You can use xev as an educational tool:
Start it and see how much information is processed each time you move the mouse.
Close the Event Tester window to exit from xev.

This section provides basic information about starting and configuring X from the
command line. For more information see the Xserver man page and the man pages
listed at the bottom of the Xserver man page.

STARTING X FROM A CHARACTER-BASED DISPLAY

Once you have logged in on a virtual console (page 136), you can start an X Win-
dow System server by using startx. See page 506 for information on creating a
/etc/inittab file that causes Linux to boot into recovery (single-user) mode, where it
displays a textual interface. When you run startx, the X server displays an X screen,
using the first available virtual console. The following command causes startx to run
in the background so you can switch back to this virtual console and give other
commands:

$ startx &

REMOTE COMPUTING AND LOCAL DISPLAYS

Typically the X server and the X client run on the same machine. To identify a
remote X server (display) an X application (client) is to use, you can either set a glo-
bal shell variable or use a command line option. Before you can connect to a remote
X server, you must turn off two security features: You must run xhost on the server
to give the client permission to connect to the X server and you must turn off the X
-nolisten tcp option on the server. Unless you have a reason to leave these features
off, turn them back on when you finish with the examples in this section—leaving
them off lessens system security. Both of these tasks must be performed on the X
server because the features protect the server. You do not have to prepare the client.
The examples in this section assume a server named tiny and a client named dog.

XWINDOW SYSTEM 255

Security and the X —nolisten tcp option

In a production environment, if you need to place an X server and the clients on different systems,
it is best to forward (tunnel) X over ssh. This setup provides a secure, encrypted connection. The
method described in this section is useful on local, secure networks and for understanding how
X works. See “X11 forwarding” on page 708 for information on setting up ssh so it forwards X.

THE X —nolisten tcp OPTION

As Ubuntu is installed, the X server starts with the —nolisten tcp option, which pro-
tects the X server by preventing TCP connections to the X server. To connect to a
remote X server, you must turn this option off on the server. To turn it off, select
Main menu: System= Administration=Login Window, Security tab, and remove
the tick from the check box labeled Deny TCP connections to Xserver.

xhost GRANTS ACCESS TO A DISPLAY

As Ubuntu is installed, xhost protects each user’s X server. A user who wants to
grant access to his X server needs to run xhost. Assume Max is logged in on the sys-
tem named tiny and wants to allow a user on dog to use his display (X server). Max
runs the following command:

max@tiny:~$ xhost +dog

dog being added to access control Tist

max@tiny:~$ xhost

access control enabled, only authorized clients can connect
INET:dog

Without any arguments, xhost describes its state. In the preceding example, INET
indicates an IPv4 connection. If Max wants to allow all systems to access his dis-
play, he can give the following command:

$ xhost +
access control disabled, clients can connect from any host

If you frequently work with other users via a network, you may find it convenient
to add an xhost line to your .bash_profile file (page 277), but see the adjacent tip
regarding security and xhost. Be selective in granting access to your X display with
xhost, however; if another system has access to your display, you may find your
work frequently interrupted.

Security and xhost

Giving a remote system access to your display using xhost means any user on the remote system
can watch everything you type in a terminal emulation window, including passwords. For this rea-
son, some software packages, such as the Tcl/Tk development system (www.tcl.tk), restrict their
own capabilities when xhost permits remote access to the X server. If you are concerned about
security or want to take full advantage of systems such as Tcl/Tk, you should use a safer means
of granting remote access to your X session. See the xauth man page for information about a
more secure replacement for xhost.

www.tcl.tk

256 CHAPTER8 LiNux GUIs: X AND GNOME

THE DISPLAY VARIABLE

The most common method of identifying a display is to use the DISPLAY shell envi-
ronment variable to hold the X server ID string. This locally unique identification
string is automatically set up when the X server starts. The DISPLAY variable holds
the screen number of a display:

$ echo $DISPLAY
:0.0

The format of the complete (globally unique) ID string for a display is
[hostname]:display-number|.screen-number|

where hostname is the name of the system running the X server, display-number is
the number of the logical (physical) display (0 unless multiple monitors or graphical
terminals are attached to the system, or if you are running X over ssh), and screen-
number is the logical number of the (virtual) terminal (O unless you are running
multiple instances of X). When you are working with a single physical screen, you
can shorten the identification string. For example, you can use tiny:0.0 or tiny:0 to
identify the only physical display on the system named tiny. When the X server and
the X clients are running on the same system, you can shorten this identification
string even further to :0.0 or :0. An ssh connection shows DISPLAY as local-
host:10.0. See “X11 forwarding” on page 708 for information on setting up ssh so
that it forwards X.

If DISPLAY is empty or not set, the screen you are working from is not running X.
An application (the X client) uses the value of the DISPLAY variable to determine
which display, keyboard, and mouse (collectively, the X server) to use. One way to
run an X application, such as xclock, on the local system but have it use the X dis-
play on a remote system is to change the value of the DISPLAY variable on the client
system so that it identifies the remote X server.

sam@dog:~$ export DISPLAY=tiny:0.0
sam@dog:~$ xclock &

The preceding example shows Sam running xclock with the default X server running
on the system named tiny. After setting the DISPLAY variable to the ID of the tiny
server, all X programs (clients) Sam starts use tiny as their server (i.e., output
appears on tiny’s display and input comes from tiny’s keyboard and mouse). Try
running xterm in place of xclock and see which keyboard it accepts input from. If this
example generates an error, refer back to the two preceding sections, which explain
how to set up the server to allow a remote system to connect to it.

When you change the value of DISPLAY

When you change the value of the DISPLAY variable, all X programs send their output to the dis-
play named by DISPLAY.

THE —display OPTION
For a single command, you can specify the X server on the command line:

XWINDOW SYSTEM 257

Switch User

X over ssh

sam@dog:~$ xclock -display tiny:0.0

Many X programs accept the —display option. Those that do not accept this option
send their output to the display specified by the DISPLAY variable.

RUNNING MULTIPLE X SERVERS

You can run multiple X servers on a single system. The most common reason for
running a second X server is to use a second display that allocates a different number
of bits to each screen pixel (uses a different color depth [page 1029]). The possible
values are 8, 16, 24, and 32 bits per pixel. Most X servers available for Linux default
to 24 or 32 bits per pixel, permitting the use of millions of colors simultaneously.
Starting an X server with 8 bits per pixel permits the use of any combination of 256
colors at the same time. The maximum number of bits per pixel allowed depends on
the computer graphics hardware and X server. With fewer bits per pixel, the system
has to transfer less data, possibly making it more responsive. In addition, many
games work with only 256 colors.

When you start multiple X servers, each must have a different ID string. The following
command starts a second X server:

$ startx —- :1

The —— option marks the end of the startx options and arguments. The startx script
uses the arguments to the left of this option and passes arguments to the right of this
option to the X server. When you give the preceding command in a graphical envi-
ronment, such as from a terminal emulator, you must work with root privileges;
you will initiate a privileged X session. The following command starts an X server
running at 16 bits per pixel:

$ startx -- -depth 16 &

Refer to “Using Virtual Consoles” on page 136 for information on how to switch to a vir-
tual console to start a second server where you do not have to work with root privileges.

When you click the Logout object (Figure 4-2, page 91), select Switch User, and log
in as a different user, Ubuntu starts a second X server to accommodate that user.
When the second user logs off, the original X server displays the first user’s desktop.
You can switch between the X servers (and users) by selecting the virtual console
(page 136) that displays the X server you want to work with.

See “Tunneling/Port Forwarding” on page 725 for information about running X
over an ssh connection.

STOPPING THE X SERVER

How you terminate a window manager depends on which window manager you are
running and how it is configured. If X stops responding, switch to a virtual terminal, log
in from another terminal or a remote system, or use ssh to access the system. Then kill
(page 522) the process running X. You can also press CONTROL-ALT-BACKSPACE to quit the X
server. This method may not shut down the X session cleanly; use it only as a last resort.

258 CHAPTER8 LINUX GUIs: X AND GNOME

REMAPPING MOUSE BUTTONS

Throughout this book, each description of a mouse click refers to the button by its
position (left, middle, or right, with left implied when no button is specified)
because the position of a mouse button is more intuitive than an arbitrary name or
number. X numbers buttons starting at the left and continuing with the mouse
wheel. The buttons on a three-button mouse are numbered 1 (left), 2 (middle), and
3 (right). A mouse wheel, if present, is numbered 4 (rolling it up) and 5 (rolling it
down). Clicking the wheel is equivalent to clicking the middle mouse button. The
buttons on a two-button mouse are 1 (left) and 2 (right).

If you are right-handed, you can conveniently press the left mouse button with your
index finger; X programs take advantage of this fact by relying on button 1 for the
most common operations. If you are left-handed, your index finger rests most con-
veniently on button 2 or 3 (the right button on a two- or three-button mouse).

“Mouse Preferences” on page 95 describes how to use a GUI to change a mouse
between right-handed and left-handed. You can also change how X interprets the
mouse buttons using xmodmap. If you are left-handed and using a three-button
mouse with a wheel, the following command causes X to interpret the right button
as button 1 and the left button as button 3:

$ xmodmap -e 'pointer =3 21 4 5'

Omit the 4 and 5 if the mouse does not have a wheel. The following command
works for a two-button mouse without a wheel:

$ xmodmap -e 'pointer = 2 1'

If xmodmap displays a message complaining about the number of buttons, use the
xmodmap —pp option to display the number of buttons X has defined for the mouse:

$ xmodmap -pp
There are 9 pointer buttons defined.

Physical Button

Button Code
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

Then expand the previous command, adding numbers to complete the list. If the
—pp option shows nine buttons, give the following command:

$ xmodmap -e 'pointer = 3214567 89'

XWINDOW SYSTEM 259

Changing the order of the first three buttons is critical to making the mouse suitable
for a left-handed user. When you remap the mouse buttons, remember to reinterpret
the descriptions in this book accordingly. When this book asks you to click the left
button or does not specify which button to click, use the right button, and vice versa.

WINDOW MANAGERS

GNOME

KDE

Interoperability

Conceptually X is very simple and does not provide some of the more common fea-
tures found in GUIs, such as the ability to drag windows. The UNIX/Linux philoso-
phy is one of modularity: X relies on a window manager, such as Metacity or
Compiz, to draw window borders and handle moving and resizing operations.

Unlike a window manager, which has a clearly defined task, a desktop environment
(manager) does many things. In general, a desktop environment, such as KDE or
GNOME, provides a means of launching applications and utilities, such as a file
manager, that work with a window manager.

KDE AND GNOME

The KDE project began in 1996, with the aim of creating a consistent, user-friendly
desktop environment for free UNIX-like operating systems. KDE is based on the Qt
toolkit made by Trolltech. When KDE development began, the Qt license was not
compatible with the GPL (page 4). For this reason the Free Software Foundation
decided to support a different project, the GNU Network Object Model Environ-
ment (GNOME). More recently Qt has been released under the terms of the GPL,
eliminating part of the rationale for GNOMZE’s existence.

GNOME is the default desktop environment for Ubuntu Linux. It provides a sim-
ple, coherent user interface that is suitable for corporate use. GNOME uses GTK
for drawing widgets. GTK, developed for the GNU Image Manipulation Program
(gimp), is written in C, although bindings for C++ and other languages are available.

GNOME does not take much advantage of its component architecture. Instead, it
continues to support the traditional UNIX philosophy of relying on many small
programs, each of which is good at doing a specific task.

KDE is written in C++ on top of the Qt framework. KDE tries to use existing tech-
nology, if it can be reused, but creates its own if nothing else is available or a supe-
rior solution is needed. For example, KDE implemented an HTML rendering engine
long before the Mozilla project was born. Similarly, work on KOffice began a long
time before StarOffice became the open-source OpenOffice.org. In contrast, the
GNOME office applications are stand-alone programs that originated outside the
GNOME project. KDE’s portability is demonstrated by the use of most of its core
components, including Konqueror and KOffice, under Mac OS X.

Since version 2, GNOME has focused on simplifying its user interface, removing
options where they are deemed unnecessary, and aiming for a set of default settings
that the end user will not wish to change. KDE has moved in the opposite direction,
emphasizing configurability.

260 CHAPTER8 LiNux GUIs: X AND GNOME

=) METK= | ETHroOWSeTs EI@

File Edit View Go Bookmarks

@
up

Home Computer

—~Menubar
[Emer
T=Main toolbar
Places = P il
SAark TLocation bar
=] Desktop
L File Syst | .
e ' ' ~T-Side pane button
— Floppy Drive # Us: ‘
i Trash adduser_3. adduser_3. —+Side pane
e — 103ubuntul tar.gz
55 Music =) 1 Handle
(2 Pictures | ‘
. gutsy-desktop- gutsy-desktop-i386. guTsy- i 5 .
e amd64.iso iso iso.torrent T View pane
2 Desktop
—1- Status bar

& =er =
Seri 01817
= o

31 items. Free space: 62.3 GB

Figure 8-2 Nautilus File Browser window displaying icons

The freedesktop.org group (freedesktop.org), whose members are drawn from the
GNOME and KDE projects, is improving interoperability and aims to produce
standards that will allow the two environments to work together. One standard
released by freedesktop.org allows applications to use the notification area of either
the GNOME or KDE panel without being aware of which desktop environment
they are running in.

GNUSTEP

The GNUStep project (www.gnustep.org), which began before both the KDE and
GNOME projects, is creating an open-source implementation of the OPENSTEP
API and desktop environment. The result is a very clean and fast user interface.

The default look of WindowMaker, the GNUStep window manager is somewhat
dated, but it supports themes so you can customize its appearance. The user inter-
face is widely regarded as one of the most intuitive found on a UNIX platform.
GNUStep has less overhead than KDE and GNOME, so it runs better on older
hardware. If you are running Linux on hardware that struggles with GNOME and
KDE or you would prefer a user interface that does not attempt to mimic Windows,
try GNUStep. WindowMaker is provided in the wmaker package.

THE NAUTILUS FILE BROWSER WINDOW

“Using Nautilus to Work with Files” on page 96 presented an introduction to
using Nautilus. This section discusses the Nautilus File Browser window in more
depth. Figure 8-2 shows a File Browser window with a Side pane (sometimes
called a sidebar), View pane, menubar, toolbar, location bar, and status bar. To

www.gnustep.org

THE NAUTILUS FILE BROWSER WINDOW 261

= ——
- AT - F3I6 Browser =
Fle Edit View Go Bookmarks Help
@ [kB G
Up Reload Home Computer Search

Location: ‘:[hnme,’mark

Places~ [Name Type =
3 mark D adduser_3.103ubuntul.dsc 708 bytes detached OpenPGP -1~ |_ocation bar
&) Desktop @ adduser_3.103ubuntul tar.gz 240.4 KB tar archive (gzip-con
L\ File System D bashrcdog 2.8 KB plain text document
—! Floppy Drive B qutsy-desktop-amds4.iso 3.5 MB raw CD image
& Tash D gutsy-desktep-i386.is0 695.0 MB raw CD image
= DR D gutsy-desktop-i386.iso.torrent 27.4 KB BitTorrent seed file
(5 Music q =

D hold 373 bytes plain text document
[E3 Pictures

|@] MDsSUMS htm 481 bytes HTML document
[E3 Videos
= Desktop D nautilus-debug-log.txt 176.0 KB plain text document7

D_Lamma—rn_hm_nlammdmume‘%

31 items, Free space: 62.3 GB

Figure 8-3 Nautilus File Browser window displaying a
List view and a textual location bar

display your home folder in a File Browser window, select Main menu: Places=
Home Folder.

THE VIEW PANE

The View pane displays icons or a list of filenames. Select the view you prefer from
the drop-down list at the right end of the location bar. Figure 8-2 shows View as
Icons and Figure 8-3 shows View as List. Objects in the View pane behave exactly
as objects on the desktop do. See the sections starting on page 90 for information
on working with objects.

You can cut/copy and paste objects within a single View pane, between View panes,
or between a View pane and the desktop. The Object Context menu (right-click)
has cut, copy, and paste selections. Or, you can use the clipboard (page 113) to
cut/copy and paste objects.

Nautilus can open a terminal emulator

When you install the nautilus-open-terminal package and reboot the system, Nautilus presents
an Open in Terminal selection in context menus where appropriate. For example, with this package
installed, when you right-click a folder (directory) object and select Open in Terminal, Nautilus
opens a terminal emulator with that directory as the working directory (page 188).

THE SIDE PANE

The Side pane augments the information Nautilus displays in the View pane. Press F9 or
click the small x at the top of the Side pane to close it. You can display the Side pane by
pressing F9 or selecting File Browser menu: View=Side Pane. To change the horizontal
size of the Side pane and its contents, drag the handle (Figure 8-2) on its right side.

262 CHAPTER8 LiNux GUIs: X AND GNOME

Places

Information

Tree

History

Notes

Emblems

The Side pane can display six types of information. The button at its top controls
which type it displays. This button is initially labeled Places; click it to display the
Side pane drop-down list, which has the following selections:

Places lists folders. Double-click one of these folders to display that folder in the
View pane. You can open a directory in a new File Browser window by right-
clicking the directory in Places and selecting Open in New Window.

Places contains two parts: The list above the divider is static and holds your
home directory, your desktop, the filesystem, unmounted filesystems, and the
trash. The list below the divider holds bookmarks. Add a bookmark by display-
ing the directory you want to bookmark in the View pane and pressing CONTROL-D or
by selecting Browser menu: Bookmarks= Add Bookmark. Remove a bookmark by
selecting Browser menu: Bookmarks=Edit Bookmarks or by right-clicking the
bookmark and selecting Remove. You can also use Edit Bookmarks to reorder
bookmarks.

Information presents information about the folder displayed by the View pane.

Tree presents an expandable tree view of your home folder, and each mounted file-
system. Each directory in the tree has a triangle to its left. Click a triangle that points
right to expand a directory; click a triangle that points down to close a directory.
Click a directory in the tree to display that directory in the View pane. Double-click
a directory to expand it in the Side pane and display it in the View pane.

History displays a chronological list of the folders that have been displayed in the
View pane, with the most recently displayed folder at the top. Double-click a folder
in this list to display it in the View pane.

Notes provides a place to keep notes about the folder displayed in the View pane.

Similar to the Emblems tab in the Object Properties window (page 117), Emblems
allows you to drag emblems from the Side pane and drop them on objects in the
View pane. Drag and drop the Erase emblem to erase emblems associated with an
object. You cannot erase emblems that Ubuntu places on objects, such as locked
and link emblems.

CONTROL BARS

Menubar

This section discusses the four control bars that initially appear in a File Browser
window: the Status bar, menubar, Main toolbar, and location bar (Figure 8-2).
From File Browser menubar: View, you can choose which of these bars to display,
except for the menubar, which Nautilus always displays.

The menubar appears at the top of the File Browser window and displays a menu
when you click one of its selections. Which menu selections Nautilus displays
depends on what the View pane is displaying and which object(s) are selected. The
next section describes the menubar in detail.

THE NAUTILUS FILE BROWSER WINDOW 263

Main toolbar

Location bar

Status bar

MENUBAR

File

The Main toolbar appears below the menubar and holds navigation tool icons:
Back, Forward, Up, Stop, Reload, Home, Computer, and Search. If the Main tool-
bar is too short to hold all icons, Nautilus displays a button with a triangle pointing
down at the right end of the toolbar. Click this button to display a drop-down list of
the remaining icons.

Below the Main toolbar is the location bar, which displays the name of the directory
that appears in the View pane. It can display this name in two formats: iconic (using
buttons) and textual (using a text box). Press CONTROL-L to switch to textual format,
click the pencil and paper icon at the left of this bar to switch between iconic and
textual formats.

In iconic format, each button represents a directory in a pathname (page 189). The
View pane displays the directory of the depressed (darker) button. Click one of
these buttons to display that directory. If the leftmost button holds a triangle that
points to the left, Nautilus is not displaying buttons for all the directories in the
absolute (full) pathname; click the button with a triangle in it to display more direc-
tory buttons.

In textual format, the text box displays the absolute pathname of the displayed
directory. To have Nautilus display another directory, enter the pathname of the
directory and press RETURN.

The location bar also holds the magnification selector and the View as drop-down
list. To change the magnification of the display in the View pane, click the plus or
minus sign in a magnifying glass on either side of the magnification percentage.
Right-click the magnification percentage itself to return to the default magnification.
Left-click the magnification percentage to display a drop-down list of magnifica-
tions. Click View as (to the right of the right-hand magnifying glass) to choose
whether to view files as icons or as a list.

The Status bar, at the bottom of the window, indicates how many items are displayed
in the View pane. If the directory you are viewing is on the local system, it also tells
you how much free space is on the device that holds the directory displayed by the
View pane.

The Nautilus File Browser menubar controls what information the File Browser dis-
plays and how it displays that information. Many of the menu selections duplicate
controls found elsewhere in the File Browser window. This section highlights some
of the selections on the menubar; click Help on the menubar and select Contents or
Get Help Online for more information. This section describes the six parts of the
menubar.

The several Open selections and the Property selection of File work with the high-
lighted object(s) in the View pane. If no objects are highlighted, these selections are

264 CHAPTER 8 LINUX GUIs: X AND GNOME

Edit

= EBTEETES =)

Service type: | Public FTP B l

Server: [m\rrors.kernel.org| l

Optional information:

Fort: [l
Folder: [l
Mame to use for connection: [l
l eﬂelp l l Browse Network l 0gance| l l Connect J

Figure 8-4 Connect to Server window

grayed out. Selecting Connect to Server displays the Connect to Server window
(Figure 8-4). This window presents a Service type drop-down list that allows you to
select FTP, SSH, Windows, or other types of servers. Enter the URL of the server in
the text box labeled Server. For an FTP connection, do not enter the ftp:// part of
the URL. Fill in the optional information as appropriate. Click Connect. If the
server requires authentication, Nautilus displays a window so you can enter your
username and password. Nautilus does not open a window but instead places an
object, named for the URL you specified, on the desktop. Open the object to con-
nect to and display the top-level directory on the server.

Many of the Edit selections work with highlighted object(s) in the View pane; if no objects
are highlighted, these selections are grayed out or not displayed. This section discusses
three selections from Edit: Create Archive, Backgrounds and Emblems, and Preferences.

The Edit=Create Archive selection creates a single archive file comprising the
selected objects. This selection opens a Create Archive window (Figure 8-5) that
allows you to specify the name and location of the archive. The drop-down list to
the right of the Archive text box allows you to specify a filename extension that
determines the type of archive this tool creates. For example, .tar.gz creates a tar
(page 161) file compressed by gzip (page 161) and .tar.bz2 creates a tar file com-
pressed by bzip2 (page 160).

The Edit=>Backgrounds and Emblems selection has three buttons on the left: Pat-
terns, Colors, and Emblems. Click Patterns to display many pattern objects on the
right side of the window. Drag and drop one of these objects on the View pane of a

= CrEBTEATET =

ﬁ Archive: [p|ctures]|§.tar.bz2 $|
Location: [uamark l

a
-

[ogancel l [.%C[eate l

Figure 8-5 Create Archive window

THE NAUTILUS FILE BROWSER WINDOW 265

Delete Versus
Move to Trash

| E HIESVIETEG) L Prefer, @

Behaviorl Display l List Columns l Preview|

Default View

ar

View new folders using: [lcon View

ar

Arrange items: l By MName

M Sort folders before files
] Show hidden and backup files

Icon View Defaults

Default zoom level: 100% =

[] Use compact layout

[] Text beside icons

List View Defaults

Default zoom level: 50% v

Tree View Defaults

™ Show only folders

Figure 8-6 File Management Preferences window, Views tab

File Browser window to change the background of all File Browser View panes. Drag
and drop the Reset object to reset the background to its default color and pattern
(usually white). The Colors button works the same way as the Patterns button. The
Emblems button works the same way as the Emblems tab in the Side pane (page 262).

The Edit=>Preferences selection displays the File Management Preferences window
(Figure 8-6). This window has five tabs that control the appearance and behavior of
File Browser windows.

The Edit=Preferences= Views tab sets several defaults, including which view the File
Browser displays (Icon or List view), the arrangement of the objects, and the default
zoom level.

The Edit=Preferences=>Behavior tab controls how many clicks it takes to open an
object and what Nautilus does when it opens an executable text object (script). For
more confident users, this tab has an option that includes a Delete selection in
addition to the Move to Trash selection on several menus. The Delete selection
immediately removes the selected object instead of moving it to the Trash folder.

The Edit=>Preferences= Display tab specifies which information Nautilus includes
in object (icon) captions. The three drop-down lists specify the order in which Nau-
tilus displays information as you increase the zoom level of the View pane. This tab
also specifies the date format Nautilus uses.

The Edit=Preferences=List Columns tab specifies which columns Nautilus displays,
and in what order it displays them, in the View pane when you select View as List.

266 CHAPTER8 LINUX GUIs: X AND GNOME

Mark G Sobell % & @i Mon Oct 1, 8:10 PM |#,

History: I &) choose action :] ‘zj

= Actions (5}
[Launch Theme Installer
@ Launch Take Screenshot
Launch Remote Desktop
#= Launch Firestarter

|‘i'| Launch Appearance

|~ Places 1
L9 Desktop > |7

|~ Web Search (8)

¥? Search Yahoo for desk

W Search Wikipedia topic for desk ||

Figure 8-7 Deskbar applet and Deskbar Applet window

The Edit=>Preferences=Preview tab controls when Nautilus displays or plays pre-
views of files (local files, all files, no files).

View Click the Main Toolbar, Side Pane, Location Bar, and Statusbar selections in View
to display or remove these elements from the window. The Show Hidden Files selec-
tion displays in the View pane files with hidden filenames (page 188).

Go The Go selections display various folders in the View pane.

Bookmark Bookmarks appear at the bottom of this menu and in the Side pane under Places.
The Bookmark selections are explained under “Places” on page 262.

Help The Help selections display local and online information about Nautilus.

GNOME UTILITIES

GNOME comes with numerous utilities that can make your work with the desktop
easier and more productive. This section covers several tools that are integral to the
use of GNOME.

DESKBAR APPLET

Clicking the Deskbar applet (Figure 8-7) or pressing ALT-F3 opens the Deskbar Applet
window (also in Figure 8-7). As you type in the text box labeled Search, this tool
searches for the string you are entering. In Figure 8-7, the user has entered the string
desk. Below the list box labeled History, the Deskbar Applet window displays matches
it has found for desk. At the top of the list are actions that match or whose descriptions
match the string. For example, clicking Launch: Take Screenshot displays a window
that includes a radio button labeled Grab the whole desktop. Below the actions are
places: When you click Desktop, the Desktop Applet opens the Nautilus File Browser

GNOME UTiLiTIES 267

displaying the desktop. Finally, the window displays a list of Web searches. Click one of
these to open Firefox and perform the search. You can also use the Search for Files win-
dow (page 269) to search for files.

The Deskbar Applet displays matches based on extensions. Right-click the Deskbar
applet and select Preferences to open the Deskbar Preferences window. In the
Searches tab of this window, you can select the extensions you want the applet to use
and change the order in which it presents information generated by the extensions.
For example, remove the tick from the check box labeled Programs to cause the
Deskbar Applet window not to display programs in the Action section of its window.
Experiment with enabling and disabling extensions and changing their order.

The Extensions with Errors tab lists extensions the Deskbar applet cannot use.
When you highlight one of the lines in the Extensions with Errors frame, the Desk-
top Preferences window displays the reason the extension cannot be used.

For example, when you click Beagle, the message Beagle does not seem to be
installed appears below the frame. Install the beagle software package and, after the
beagle-crawl-system cron script runs (it runs each night) and you reboot the system,
this extension appears in the Searches tab. You can enable it and change its position
in the list of extensions.

FONT PREFERENCES

The Fonts tab of the Appearance Preferences window (Figure 8-8) enables you to
change the font that GNOME uses for applications, documents, the desktop, window
titles, and terminal emulators (fixed width). To display this window, select Main
menu: System= Preferences= Appearance or enter gnome-appearance-properties on
a command line. Click the Fonts tab. Click one of the five font bars in the upper part
of the window to display the Pick a Font window (discussed next).

i PP Prarerences) =)

Sans

oB
5}

Application font:

Sans

oB
5}

Document font:

Sans Bold

oB
=)

window title font;

H
=)

[
[
Desktapfont: | Sans
[
[

oB
=)

Eixed width font: Menospace

Rendering
() Monochrome (@ Best shapes
\abcfgop AO abcfgop| |abcfgop AO abcfgop\
() Best contrast (O Subpixel smoothing (LCDs)

labcfgop AO abcfgop) |abcfgop AO abcfgop)

Figure 8-8 Appearance Preferences window, Fonts tab

268 CHAPTER8 LiNux GUIs: X AND GNOME

7l lisle) Fuyi =0

Family: Style: Size:
Regular |10 |

Sahadeva -
Italic

Samanata 8
Bold

Sans . 9

. Bold Italic

Sarai 10

Serif 11

T SN RN NP S P | 12

[T+]
Preview:
abcdefghijk ABCDEFGHIK ‘
l ogancel ["‘.JJQK J

Figure 8-9 The Pick a Font window

Examine the four sample boxes in the lower part of the window and select the one
in which the letters look the best. Subpixel smoothing is usually best for LCD mon-
itors. Click Details to refine the font rendering further, again picking the box in each
frame in which the letters look the best.

Pick A FONT WINDOW

The Pick a Font window (Figure 8-9) appears when you need to choose a font (see
“Font Preferences” on the previous page). From this window you can select a font
family, a style, and a size. A preview of your choice appears in the Preview box in
the lower part of the window. Click OK when you are satisfied with your choice.

Pick A COLOR WINDOW

The Pick a Color window (Figure 8-10) appears when you need to specify a color,
such as when you specify a solid color for the desktop background (page 103) or a
panel. To specify a color for a panel, right-click the panel to display its context
menu, click the Background tab, click the radio button labeled Solid color, and click
within the box labeled Color. GNOME displays the Pick a Color window.

When the Pick a Color window opens, the bar below the color circle displays the
current color. Click the desired color on the color ring, and click/drag the lightness
of that color in the triangle. As you change the color, the right end of the bar below
the color circle previews the color you are selecting, while the left end continues to
display the current color. You can also use the eyedropper to pick up a color from
the workspace: Click the eyedropper, and then click the resulting eyedropper mouse
pointer on the color you want to select. The color you choose appears in the bar.
Click OK when you are satisfied with the color you have specified.

GNOME UTiLITIES 269

_,lih Dok Colt @
: Hue: |31 : Red: [218 :
Saturation: ‘40 : Green: |176 :
walue; ‘ES Blue: |130

Color name: ‘#DABOS2 |

Figure 8-10 Pick a Color window

RUN APPLICATION WINDOW

The Run Application window (Figure 4-4, page 93) enables you to run a program as
though you had initiated it from a command line. To display the Run Application win-
dow, press At-F2. Enter a command in the text box. As soon as GNOME can uniquely
identify the command you are entering, it completes the command and may display an
object that identifies the application. Keep typing if the displayed command is not the
one you want to run. Otherwise, press RETURN to run the command or TAB to accept the
command in the text box. You can then continue entering information in the window.
Click Run with file to specify a file to use as an argument to the command in the text
box. Put a tick in the check box labeled Run in terminal to run a textual application,
such as vim, in a terminal emulator window.

SEARCHING FOR FILES

The Search for Files window (Figure 8-11 on the next page) can help you find files
whose locations or names you do not know or have forgotten. You can also use the
Deskbar applet (page 266) to search for files. Open this window by selecting Main
menu: Places= Search for Files or enter gnome-search-tool on a command line from
a terminal emulator or Run Application window (ALT-R2). To search by filename or
partial filename, enter the (partial) filename in the combo box labeled Name con-
tains and then select the folder you want to search in from the drop-down list
labeled Look in folder. When GNOME searches in a folder, it searches subfolders to
any level (it searches the directory hierarchy). To search all directories in all
mounted filesystems, select File System from the drop-down list labeled Look in
folder. Select Other to search a folder not included in the drop-down list; GNOME
opens the Browse window (page 98). Once you have entered the search criteria,
click Find. GNOME displays the list of files matching the criteria in the list box
labeled Search results. Double-click a file in this list box to open it.

You can refine the search by entering more search criteria. Click the triangle to the
left of Select more options to expand the window and display more search criteria.
GNOME initially displays two search criteria and a line for adding criteria as shown

270 CHAPTER 8 LINUX GUIs: X AND GNOME

=) 15 hilEsTEound =Searchiorbles: =EE

. [mailbox =
O Name contains ‘_ma\ |]
J

Look in folder: [,7 File System v]

P select more options

search results: 15 files found

Name ~ Folder

D mailbox.c Jusrfsrcfubuntu-2.6/arch/e
D mailbox.c Jusrfsrejubuntu-2.6/archiz
D mailbox.c Jusrfsrcfubuntu-2.6/arch/z
D mailbox.h Jusrfsrcfubuntu-2.6finclud
D mailbox.h Jusrfsrcfubuntu-2.6/arch/e
D mailbox.h Jusrfsreflinux-headers-2. GL=

)

(&)

Figure 8-11 The Search for Files window

in Figure 8-12. With this part of the window expanded, GNOME incorporates all
visible search criteria when you click Find.

The first line below Select more options holds a text box labeled Contains the text.
Absence of an entry in this text box matches all files. You can leave this text box as is
or remove the line by clicking Remove at the right end of the line. To search for a file
that contains a specific string of characters (text), enter the string in this text box.

Add criteria by making a selection from the list box labeled Available options and
clicking Add to the right of the drop-down list. Remove criteria by clicking Remove
at the right end of the line that holds the criterion you want to remove.

To select files that were modified fewer than a specified number of days ago, select
Date modified less than from the list box and click Add. The Search for Files win-
dow adds a line with a spin box labeled Date modified less than. With this spin box
showing 0 (zero), as it does initially, no file matches the search criteria. Change this
number as desired and click Find to begin the search.

GNOME TERMINAL EMULATOR/SHELL

The GNOME terminal emulator (Figure 4-17, page 114) displays a window that
mimics a character-based terminal (page 114). To display a terminal emulator win-
dow, select Main menu: Applications= Accessories= Terminal or enter gnome-
terminal on a command line from a Run Application window (ALT-F2). When the
GNOME terminal emulator is already displayed, select Terminal menubar:
File=>Open Terminal or right-click within the Terminal window and select Open
Terminal to display a new terminal emulator window.

To open an additional terminal session within the same Terminal window, right-
click the window and select Open Tab from the context menu or select Terminal
menubar: File>Open Tab. A row of tabs appears below the menubar as gnome-
terminal opens another terminal session on top of the existing one. Add as many ter-
minal sessions as you like; click the tabs to switch between sessions.

CHAPTER SUMMARY 271

= S dalndil e Flld i =)

@) Name contains: | ‘ -

l
— Look in folder: l-omark B l

< Select more options

Contains the text: | ‘
Date modified less than: |0 “l days

Date modified more than =] ‘ =k Add |

Ayailable options:

Figure 8-12 The Search for Files window with Select more options expanded

A session you add from the context menu uses the same profile as the session you
open it from. When you use the menubar to open a session, GNOME gives you a
choice of profiles, if more than one is available. You can add and modify profiles,
including the Default profile, by selecting Terminal menubar: Edit=Profiles. High-
light the profile you want to modify or click New to design a new profile.

CHAPTER SUMMARY

The X Window System GUI is portable and flexible and makes it easy to write
applications that work on many different types of systems without having to know
low-level details for the individual systems. This GUI can operate in a networked
environment, allowing a user to run a program on a remote system and send the
results to a local display. The client/server concept is integral to the operation of the
X Window System, in which the X server is responsible for fulfilling requests made
of X Window System applications or clients. Hundreds of clients are available that
can run under X. Programmers can also write their own clients, using tools such as
the Qt and KDE libraries to write KDE programs and the GTK+ and GTK+2
GNOME libraries to write GNOME programs.

The window managers, and virtually all X applications, are designed to help users
tailor their work environments in simple or complex ways. You can designate appli-
cations that start automatically, set such attributes as colors and fonts, and even
alter the way keyboard strokes and mouse clicks are interpreted.

Built on top of the X Window System, you can use the GNOME desktop manager
as is or customize it to better suit your needs. It is a graphical user interface to sys-
tem services (commands), the filesystem, applications, and more. Although not part
of GNOME, the Metacity and Compiz window managers work closely with
GNOME and are the default window managers for GNOME under Ubuntu Linux.

272 CHAPTER 8 LINUX GUIs: X AND GNOME

A window manager controls all aspects of the windows, including placement, deco-
ration, grouping, minimizing and maximizing, sizing, and moving.

The Nautilus File Browser window is a critical part of GNOME; the desktop is a
modified File Browser window. The File Browser View pane displays icons or a list
of filenames that you can work with. The Side pane, which can display six types of
information, augments the information Nautilus displays in the View pane.

GNOME also provides many graphical utilities you can use to customize and work
with the desktop. It supports MIME types so when you double-click an object,
GNOME generally knows which tool to use to display the data represented by the
object. In sum, GNOME is a powerful desktop manager that can make your job
both easier and more fun.

EXERCISES

1. a. What is Nautilus?
b. List four things you can do with Nautilus.
¢. How do you use Nautilus to search for a file?

2. What is a terminal emulator? What does it allow you to do from a GUI
that you would not be able to do without one?

3. How would you search the entire filesystem for a file named today.odt?
4. a. List two ways you can open a file using Nautilus.

b. How does Nautilus “know” which program to use to open different
types of files?

c. Which are the three common Nautilus control bars? What kinds of
tools do you find on each?

d. Discuss the use of the Nautilus location bar in textual mode.

ADVANCED EXERCISES

5. Assume a mouse with nine pointer buttons defined. How would you
reverse the effects of using the mouse wheel?

6. a. How would you use Nautilus to connect to the FIP server at
ftp.ubuntu.com?

b. Open the following folders: ubuntu, dists, and gutsy. How would you
copy the file named Contents-i386.gz to the desktop? What type of file
is Contents-1386.gz?

ADVANCED EXERCISES 273

c. How would you open the Contents-i386.gz file on the desktop? How
would you open the Contents-i386.gz file on the FTP server? Which file
opens more quickly? Why? Which file can you modify?

7. Discuss the client/server environment the X Window System sets up. How
does the X server work? List three X clients. Where is the client and where
is the server when you log in on a local system? What is an advantage of
this setup?

8. Run xwininfo from a terminal emulator window and answer these questions:
a. What does xwininfo do?

b. What does xwininfo give as the name of the window you clicked? Does
that agree with the name in the window’s titlebar?

c. What is the size of the window? What units does xwininfo display? What
is the depth of a window?

d. How can you get xwininfo to display the same information without hav-
ing to click the window?

9. Write an xeyes command to display a window that is 600 pixels wide and
400 pixels tall, is located 200 pixels from the right edge of the screen and
300 pixels from the top of the screen, and contains orange eyes outlined in
blue with red pupils. (Hint: Refer to the xeyes man page.)

This page intentionally left blank

IN THIS CHAPTER

Startup Files
Redirecting Standard Error.
Writing a Simple Shell Script
Job Control..................

Manipulating the Directory

Stack

Reexecuting and Editing

Commands................

Functions...................

Controlling bash Features

and Options.

Processing the Command Line. . .

THE BOURNE AGAIN
SHELL

This chapter picks up where Chapter 7 left off. Chapter 11
expands on this chapter, exploring control flow commands and
more advanced aspects of programming the Bourne Again
Shell. The bash home page is www.gnu.org/software/bash. The
bash info page is a complete Bourne Again Shell reference.

The Bourne Again Shell is a command interpreter and high-
level programming language. As a command interpreter, it pro-
cesses commands you enter on the command line in response to
a prompt. When you use the shell as a programming language,
it processes commands stored in files called shell scripts. Like
other languages, shells have variables and control flow com-
mands (for example, for loops and if statements).

When you use a shell as a command interpreter, you can cus-
tomize the environment you work in. You can make your
prompt display the name of the working directory, create a
function or alias for cp that keeps it from overwriting certain
kinds of files, take advantage of keyword variables to change
aspects of how the shell works, and so on. You can also write
shell scripts that do your bidding, from a one-line script that
stores a long, complex command to a longer script that runs a

275

www.gnu.org/software/bash

276 CHAPTER 9

THE BOURNE AGAIN SHELL

set of reports, prints them, and mails you a reminder when the job is done. More
complex shell scripts are themselves programs; they do not just run other programs.
Chapter 11 has some examples of these types of scripts.

Most system shell scripts are written to run under the Bourne Again Shell. If you
will ever work in recovery mode—as when you boot your system or do system
maintenance, administration, or repair work, for example—it is a good idea to
become familiar with this shell.

This chapter expands on the interactive features of the shell described in Chapter 7,
explains how to create and run simple shell scripts, discusses job control, introduces
the basic aspects of shell programming, talks about history and aliases, and
describes command line expansion. Chapter 11 presents some more challenging
shell programming problems.

BACKGROUND

sh Shell

dash Shell

Korn Shell

POSIX standards

The Bourne Again Shell is based on the Bourne Shell (the early UNIX shell; this
book refers to it as the original Bourne Shell to avoid confusion), which was written
by Steve Bourne of AT&T’s Bell Laboratories. Over the years the original Bourne

Shell has been expanded but it remains the basic shell provided with many commer-
cial versions of UNIX.

Because of its long and successful history, the original Bourne Shell has been used to
write many of the shell scripts that help manage UNIX systems. Some of these
scripts appear in Linux as Bourne Again Shell scripts. Although the Bourne Again
Shell includes many extensions and features not found in the original Bourne Shell,
bash maintains compatibility with the original Bourne Shell so you can run Bourne
Shell scripts under bash. On UNIX systems the original Bourne Shell is named sh.

The bash executable file is about 700 kilobytes, has many features, and is well
suited as a user login shell. The dash shell is about 80 kilobytes, offers Bourne Shell
compatibility for shell scripts (noninteractive use), and because of its size, can load
and execute shell scripts much more quickly than bash. Most system scripts are set
up to run sh which, under Ubuntu, is a symbolic link to dash. This setup allows the
system to boot and run system shell scripts quickly.

On Linux systems sh is a symbolic link to bash ensuring that scripts that require the
presence of the Bourne Shell still run. When called as sh, bash does its best to emu-
late the original Bourne Shell.

System V UNIX introduced the Korn Shell (ksh), written by David Korn. This shell
extended many features of the original Bourne Shell and added many new features.
Some features of the Bourne Again Shell, such as command aliases and command
line editing, are based on similar features from the Korn Shell.

The POSIX (the Portable Operating System Interface) family of related standards is
being developed by PASC (IEEE’s Portable Application Standards Committee,
www.pasc.org). A comprehensive FAQ on POSIX, including many links, appears at
www.opengroup.org/austin/papers/posix_faq.html.

www.pasc.org
www.opengroup.org/austin/papers/posix_faq.html

SHELL BAasics 277

POSIX standard 1003.2 describes shell functionality. The Bourne Again Shell pro-
vides the features that match the requirements of this POSIX standard. Efforts are
under way to make the Bourne Again Shell fully comply with the POSIX standard.
In the meantime, if you invoke bash with the ——posix option, the behavior of the
Bourne Again Shell will more closely match the POSIX requirements.

SHELL BASICS

This section covers writing and using startup files, redirecting standard error, writing
and executing simple shell scripts, separating and grouping commands, implement-
ing job control, and manipulating the directory stack.

STARTUP FILES

/etc/profile

.bash_profile
.bash_login
.profile

.bash_logout

/etc/bashre

.bashre

When a shell starts, it runs startup files to initialize itself. Which files the shell runs
depends on whether it is a login shell, an interactive shell that is not a login shell
(such as you get by giving the command bash), or a noninteractive shell (one used to
execute a shell script). You must have read access to a startup file to execute the
commands in it. Ubuntu Linux puts appropriate commands in some of these files.
This section covers bash startup files.

LOGIN SHELLS

The files covered in this section are executed by login shells and shells that you start
with the ——login option. Login shells are, by their nature, interactive.

The shell first executes the commands in /etc/profile. A user working with root privi-
leges can set up this file to establish systemwide default characteristics for bash users.

Next the shell looks for ~/.bash_profile, ~/.bash_login, and ~/.profile (~/ is short-
hand for your home directory), in that order, executing the commands in the first of
these files it finds. You can put commands in one of these files to override the
defaults set in /etc/profile. A shell running on a virtual terminal does not execute
commands in these files.

When you log out, bash executes commands in the ~/.bash_logout file. Frequently
commands that clean up after a session, such as those that remove temporary files,
go in this file.

INTERACTIVE NONLOGIN SHELLS

The commands in the preceding startup files are not executed by interactive, non-
login shells. However, these shells inherit from the login shell variables that are set
by these startup files.

Although not called by bash directly, many ~/.bashrc files call /etc/bashrc. This
setup allows a user working with root privileges to establish systemwide default
characteristics for nonlogin bash shells.

An interactive nonlogin shell executes commands in the ~/.bashrc file. Typically a
startup file for a login shell, such as .bash_profile, runs this file, so that both login
and nonlogin shells benefit from the commands in .bashrc.

278 CHAPTER 9

THE BOURNE AGAIN SHELL

BASH_ENV

NONINTERACTIVE SHELLS

The commands in the previously described startup files are not executed by nonin-
teractive shells, such as those that runs shell scripts. However, these shells inherit
from the login shell variables that are set by these startup files.

Noninteractive shells look for the environment variable BASH_ENYV (or ENYV, if the
shell is called as sh) and execute commands in the file named by this variable.

SETTING UP STARTUP FILES

Although many startup files and types of shells exist, usually all you need are the
.bash_profile and .bashrc files in your home directory. Commands similar to the fol-
lowing in .bash_profile run commands from .bashrc for login shells (when .bashrc
exists). With this setup, the commands in .bashrc are executed by login and non-
login shells.

if [-f ~/.bashrc]; then source ~/.bashrc; fi

The [—f ~/.bashrc] tests whether the file named .bashrc in your home directory
exists. See pages 397 and 399 for more information on test and its synonym [].

Use .bash_profile to set PATH

Because commands in .bashrc may be executed many times, and because subshells inherit
exported variables, it is a good idea to put commands that add to existing variables in the
.bash_profile file. For example, the following command adds the hin subdirectory of the home
directory to PATH (page 302) and should go in .hash_profile:

PATH=$PATH : $HOME /bin

When you put this command in .bash_profile and not in .bashre, the string is added to the PATH
variable only once, when you log in.

Modifying a variable in .bash_profile allows changes you make in an interactive session to prop-
agate to subshells. In contrast, modifying a variable in .bashre overrides changes inherited from
a parent shell.

Sample .bash_profile and .bashrc files follow. Some of the commands used in these
files are not covered until later in this chapter. In any startup file, you must export
variables and functions that you want to be available to child processes. For more
information refer to “Locality of Variables” on page 434.

$ cat ~/.bash_profile
if [-f ~/.bashrc]; then

source ~/.bashrc # read Tocal startup file if it exists
fi
PATH=$PATH: . # add the working directory to PATH
export PS1="[\h \W \!]\$ ' # set prompt

The first command in the preceding .bash_profile file executes the commands in the
user’s .bashrc file if it exists. The next command adds to the PATH variable
(page 302). Typically PATH is set and exported in /etc/profile so it does not need to
be exported in a user’s startup file. The final command sets and exports PS1
(page 303), which controls the user’s prompt.

SHELL Basics 279

Next is a sample .bashrc file. The first command executes the commands in the
/etc/bashr file if it exists. Next the LANG (page 308) and VIMINIT (for vim initial-
ization) variables are set and exported and several aliases (page 328) are established.
The final command defines a function (page 331) that swaps the names of two files.

$ cat ~/.bashrc
if [-f /etc/bashrc 1; then
source /etc/bashrc # read global startup file if it exists
fi
set -o noclobber
unset MAILCHECK
export LANG=C
export VIMINIT='set ai aw'
alias df='df -h'
alias rm="rm -i'
alias 1t="T1s -1trh | tail'
alias h="history | tail’

prevent overwriting files

turn off "you have new mail" notice
set LANG variable

set vim options

set up aliases

always do interactive rm's

H* o H W KW

function switch() # a function to exchange the names
{ # of two files

Tocal tmp=$$switch

mv "$1" $tmp

mv "$2" "$1"

mv $tmp "$2"
}

. (DOT) OR source: RUNS A STARTUP FILE IN
THE CURRENT SHELL

After you edit a startup file such as .bashrc, you do not have to log out and log in
again to put the changes into effect. You can run the startup file using the . (dot) or
source builtin (they are the same command). As with all other commands, the . must
be followed by a SPACE on the command line. Using the . or source builtin is similar
to running a shell script, except that these commands run the script as part of the
current process. Consequently, when you use . or source to run a script, changes you
make to variables from within the script affect the shell that you run the script
from. You can use the . or source command to run any shell script—not just a
startup file—but undesirable side effects (such as changes in the values of shell vari-
ables you rely on) may occur. If you ran a startup file as a regular shell script and
did not use the . or source builtin, the variables created in the startup file would
remain in effect only in the subshell running the script—not in the shell you ran the
script from. For more information refer to “Locality of Variables” on page 434.

In the following example, .bashrc sets several variables and sets PS1, the prompt, to
the name of the host. The . builtin puts the new values into effect.

$ cat ~/.bashrc

export TERM=vt100 # set the terminal type

export PS1="$(hostname -f): " # set the prompt string

export CDPATH=:$HOME # add HOME to CDPATH string

stty kill '"Au' # set kill Tine to control-u$. ~/.bashrc

bravo.example.com:

280 CHAPTER 9

THE BOURNE AGAIN SHELL

ComMMANDS THAT ARE SYMBOLS

The Bourne Again Shell uses the symbols (,), [,], and $ in a variety of ways. To
minimize confusion, Table 9-1 lists the most common use of each of these symbols,
even though some of them are not introduced until later.

Builtin commands that are symbols

Symbol Command

() Subshell (page 289)

$() Command substitution (page 344)

(()) Arithmetic evaluation; a synonym for let (use when the enclosed value con-
tains an equal sign) (page 458)

$(()) Arithmetic expansion (not for use with an enclosed equal sign) (page 342)

[1 The test command (pages 397, 399, and 412)

[[11 Conditional expression; similar to [] but adds string comparisons (page 459)

REDIRECTING STANDARD ERROR

File descriptors

Chapter 7 covered the concept of standard output and explained how to redirect
standard output of a command. In addition to standard output, commands can send
output to standard error. A command can send error messages to standard error to
keep them from getting mixed up with the information it sends to standard output.

Just as it does with standard output, by default the shell sends a command’s standard
error to the screen. Unless you redirect one or the other, you may not know the differ-
ence between the output a command sends to standard output and the output it sends
to standard error. This section covers the syntax used by the Bourne Again Shell.

A file descriptor is the place a program sends its output to and gets its input from.
When you execute a program, the process running the program opens three file
descriptors: 0 (standard input), 1 (standard output), and 2 (standard error). The
redirect output symbol (> [page 228]) is shorthand for 1>, which tells the shell to
redirect standard output. Similarly < (page 230) is short for O<, which redirects
standard input. The symbols 2> redirect standard error. For more information refer
to “File Descriptors” on page 429.

The following examples demonstrate how to redirect standard output and standard
error to different files and to the same file. When you run the cat utility with the
name of a file that does not exist and the name of a file that does exist, cat sends an
error message to standard error and copies the file that does exist to standard out-
put. Unless you redirect them, both messages appear on the screen.

$ cat y

This 1is y.

$ cat x

cat: x: No such file or directory

SHELL BAsics 281

Duplicating a file
descriptor

$ cat x y
cat: x: No such file or directory
This 1is y.

When you redirect standard output of a command, output sent to standard error is
not affected and still appears on the screen.

$ cat x y > hold

cat: x: No such file or directory
$ cat hold

This 1is vy.

Similarly, when you send standard output through a pipe, standard error is not
affected. The following example sends standard output of cat through a pipe to tr,
which in this example converts lowercase characters to uppercase. (See the tr info
page for more information.) The text that cat sends to standard error is not trans-
lated because it goes directly to the screen rather than through the pipe.

$ cat x y | tr "[a-z]" "[A-Z]"
cat: x: No such file or directory
THIS IS Y.

The following example redirects standard output and standard error to different
files. The notation 2> tells the shell where to redirect standard error (file descriptor
2). The 1> tells the shell where to redirect standard output (file descriptor 1). You
can use > in place of 1>.

$ cat x y 1> holdl 2> hold2

$ cat holdl

This 1is vy.

$ cat hold2

cat: x: No such file or directory

In the next example, 1> redirects standard output to hold. Then 2>&1 declares file
descriptor 2 to be a duplicate of file descriptor 1. As a result both standard output
and standard error are redirected to hold.

$ cat x y 1> hold 2>&1

$ cat hold

cat: x: No such file or directory
This is y.

In the preceding example, 1> hold precedes 2>&1. If they had been listed in the
opposite order, standard error would have been made a duplicate of standard out-
put before standard output was redirected to hold. In that case only standard
output would have been redirected to hold.

The next example declares file descriptor 2 to be a duplicate of file descriptor 1 and
sends the output for file descriptor 1 through a pipe to the tr command.

$ cat x y 2>&1 | tr "[a-z]" "[A-Z]"
CAT: X: NO SUCH FILE OR DIRECTORY
THIS IS Y.

282 CHAPTER9 THE BOURNE AGAIN SHELL

Sending errors to - You can also use 1>&2 to redirect standard output of a command to standard error.
standard error This technique is used in shell scripts to send the output of echo to standard error. In
the following script, standard output of the first echo is redirected to standard error:

$ cat message_demo
echo This 1is an error message. 1>&2
echo This 1is not an error message.

If you redirect standard output of message_demo, error messages such as the one pro-
duced by the first echo will still go to the screen because you have not redirected stan-
dard error. Because standard output of a shell script is frequently redirected to another
file, you can use this technique to display on the screen error messages generated by the
script. The Inks script (page 404) uses this technique. You can also use the exec builtin
to create additional file descriptors and to redirect standard input, standard output,
and standard error of a shell script from within the script (page 448).

The Bourne Again Shell supports the redirection operators shown in Table 9-2.

Redirection operators

Operator Meaning
< filename Redirects standard input from filename.
> filename Redirects standard output to filename unless filename exists and noclobber

(page 231) is set. If noclobber is not set, this redirection creates filename if it
does not exist.

>| filename Redirects standard output to filename, even if the file exists and noclobber
(page 231) is set.

>> filename Redirects and appends standard output to filename unless filename exists and
noclobber (page 231) is set. If noclobber is not set, this redirection creates
filename if it does not exist.

<&m Duplicates standard input from file descriptor m (page 430).

[n]>&m Duplicates standard output or file descriptor nif specified from file descriptor
m (page 430).

[n]<&— Closes standard input or file descriptor n if specified (page 430).

[n]>8&— Closes standard output or file descriptor n if specified.

WRITING A SIMPLE SHELL SCRIPT

A shell script is a file that contains commands that the shell can execute. The com-
mands in a shell script can be any commands you can enter in response to a shell
prompt. For example, a command in a shell script might run a Linux utility, a com-
piled program, or another shell script. Like the commands you give on the command
line, a command in a shell script can use ambiguous file references and can have its
input or output redirected from or to a file or sent through a pipe (page 234). You
can also use pipes and redirection with the input and output of the script itself.

SHELL BAsics 283

In addition to the commands you would ordinarily use on the command line, con-
trol flow commands (also called control structures) find most of their use in shell
scripts. This group of commands enables you to alter the order of execution of
commands in a script just as you would alter the order of execution of statements
using a structured programming language. Refer to “Control Structures” on
page 396 for specifics.

The shell interprets and executes the commands in a shell script, one after another.
Thus a shell script enables you to simply and quickly initiate a complex series of
tasks or a repetitive procedure.

chmod: MAKES A FILE EXECUTABLE

To execute a shell script by giving its name as a command, you must have permis-
sion to read and execute the file that contains the script (refer to “Access Permis-
sions” on page 199). Read permission enables you to read the file that holds the
script. Execute permission tells the shell and the system that the owner, group,
and/or public has permission to execute the file; it implies that the content of the file
is executable.

When you create a shell script using an editor, the file does not typically have its
execute permission set. The following example shows a file named whoson that
contains a shell script:

$ cat whoson

date

echo "Users Currently Logged In"
who

$ whoson

bash: ./whoson: Permission denied

You cannot execute whoson by giving its name as a command because you do not
have execute permission for the file. The shell does not recognize whoson as an exe-
cutable file and issues an error message when you try to execute it. When you give
the filename as an argument to bash (bash whoson), bash takes the argument to be a
shell script and executes it. In this case bash is executable and whoson is an argu-
ment that bash executes so you do not need to have permission to execute whoson.

Command not found?
If you get the message

$ whoson
bash: whoson: command not found

the shell is not set up to search for executable files in the working directory. Give this command
instead:

$./whoson

The ./ tells the shell explicitly to look for an executable file in the working directory. To change the
environment so that the shell searches the working directory automatically, see page 302.

284 CHAPTER9 THE BOURNE AGAIN SHELL

$ 1s -1 whoson
-ryw-r-- 1 alex group 40 May 24 11:30 whoson

$ chmod u+x whoson
$ 1s -1 whoson
-rn@yw-r-- 1 alex group 40 May 24 11:30 whoson

$ whoson

Tue May 22 11:40:49 PDT 2007
Users Currently Logged In
jenny pts/7 May 21 18:17

hls pts/1 May 22 09:59
scott pts/12 May 22 06:29 (bravo.example.com)
alex pts/4 May 22 09:08

Figure 9-1 Using chmod to make a shell script executable

The chmod utility changes the access privileges associated with a file. Figure 9-1
shows Is with the -1 option displaying the access privileges of whoson before and
after chmod gives execute permission to the file’s owner.

The first Is displays a hyphen (=) as the fourth character, indicating that the owner
does not have permission to execute the file. Next chmod gives the owner execute
permission: The u+x causes chmod to add (+) execute permission (x) for the owner
(u). (The u stands for user, although it means the owner of the file who may be the
user of the file at any given time.) The second argument is the name of the file. The
second Is shows an x in the fourth position, indicating that the owner now has exe-
cute permission.

If other users will execute the file, you must also change group and/or public access
permissions for the file. Any user must have execute access to use the file’s name as
a command. If the file is a shell script, the user trying to execute the file must also
have read access to the file. You do not need read access to execute a binary execut-
able (compiled program).

The final command in Figure 9-1 shows the shell executing the file when its name is
given as a command. For more information refer to “Access Permissions” on
page 199, Is (page 199), and chmod (page 200).

#! SPECIFIES A SHELL

You can put a special sequence of characters on the first line of a file to tell the oper-
ating system which shell should execute the file. Because the operating system checks
the initial characters of a program before attempting to exec it, these characters save
the system from making an unsuccessful attempt. If #! are the first two characters of
a script, the system interprets the characters that follow as the absolute pathname of
the utility that should execute the script. This can be the pathname of any program,
not just a shell. The following example specifies that bash should run the script:

SHELL BAsics 285

fork and exec
system calls

$ cat bash_script
#!/bin/bash
echo "This 1is a Bourne Again Shell script."”

The #! characters are useful if you have a script that you want to run with a shell
other than the shell you are running the script from. The following example shows a
script that should be executed by tcsh:

$ cat tcsh_script

#!/bin/tcsh

echo "This is a tcsh script."”
set person = jenny

echo "person is $person"

Because of the #! line, the operating system ensures that tcsh executes the script no
matter which shell you run it from.

You can use ps —f within a shell script to display the name of the shell that is execut-
ing the script. The three lines that ps displays in the following example show the
process running the parent bash shell, the process running the tcsh script, and the
process running the ps command:

$ cat tcsh_script2
#!/bin/tcsh

ps -f

$ tcsh_script2

UID PID PPID C STIME TTY TIME CMD

alex 3031 3030 O Novl6 pts/4 00:00:00 -bash

alex 9358 3031 0 21:13 pts/4 00:00:00 /bin/tcsh ./tcsh_script2
alex 9375 9358 0 21:13 pts/4 00:00:00 ps -f

If you do not follow #! with the name of an executable program, the shell reports
that it cannot find the command that you asked it to run. You can optionally follow
#! with SPACEs. If you omit the #! line and try to run, for example, a tcsh script from
bash, the shell may generate error messages or the script may not run properly.

BEGINS A COMMENT

Comments make shell scripts and all code easier to read and maintain by you and
others. If a pound sign (#) in the first character position of the first line of a script is
not immediately followed by an exclamation point (!) or if a pound sign occurs in
any other location in a script, the shell interprets it as the beginning of a comment.
The shell then ignores everything between the pound sign and the end of the line
(the next NEWLINE character).

RUNNING A SHELL SCRIPT

A command on the command line causes the shell to fork a new process, creating a
duplicate of the shell process (a subshell). The new process attempts to exec (exe-
cute) the command. Like fork, the exec routine is executed by the operating system
(a system call). If the command is a binary executable program, such as a compiled

286 CHAPTER9 THE BOURNE AGAIN SHELL

C program, exec succeeds and the system overlays the newly created subshell with
the executable program. If the command is a shell script, exec fails. When exec fails,
the command is assumed to be a shell script, and the subshell runs the commands in
the script. Unlike a login shell, which expects input from the command line, the sub-
shell takes its input from a file: the shell script.

As discussed earlier, if you have a shell script in a file that you do not have execute
permission for, you can run the commands in the script by using a bash command to
exec a shell to run the script directly. In the following example, bash creates a new
shell that takes its input from the file named whoson:

$ bash whoson

Because the bash command expects to read a file containing commands, you do not
need execute permission for whoson. (You do need read permission.) Even though
bash reads and executes the commands in whoson, standard input, standard output,
and standard error remain connected to the terminal.

Although you can use bash to execute a shell script, this technique causes the script to
run more slowly than giving yourself execute permission and directly invoking the
script. Users typically prefer to make the file executable and run the script by typing
its name on the command line. It is also easier to type the name, and this practice is
consistent with the way other kinds of programs are invoked (so you do not need to
know whether you are running a shell script or another kind of program). However, if
bash is not your interactive shell or if you want to see how the script runs with differ-
ent shells, you may want to run a script as an argument to bash or tcsh.

sh does not call the original Bourne Shell

The original Bourne Shell was invoked with the command sh. Although you can call bash with an
sh command, it is not the original Bourne Shell. The sh command (/bin/sh) is a symbolic link to
/hin/bash, so it is simply another name for the bash command. When you call bash using the
command sh, bash tries to mimic the behavior of the original Bourne Shell as closely as possible.
It does not always succeed.

SEPARATING AND GROUPING COMMANDS

Whether you give the shell commands interactively or write a shell script, you must
separate commands from one another. This section reviews the ways to separate
commands that were covered in Chapter 7 and introduces a few new ones.

; AND NEWLINE SEPARATE COMMANDS

The NEWLINE character is a unique command separator because it initiates execution
of the command preceding it. You have seen this throughout this book each time
you press the RETURN key at the end of a command line.

The semicolon (;) is a command separator that does not initiate execution of a com-
mand and does not change any aspect of how the command functions. You can exe-
cute a series of commands sequentially by entering them on a single command line
and separating each from the next with a semicolon (;). You initiate execution of the
sequence of commands by pressing RETURN:

SHELL BAsics 287

Whitespace

optional

$x5;y;z

If x, y, and z are commands, the preceding command line yields the same results as
the next three commands. The difference is that in the next example the shell issues
a prompt after each of the commands (x, y, and z) finishes executing, whereas the
preceding command line causes the shell to issue a prompt only after z is complete:

A A
N < X

Although the whitespace around the semicolons in the earlier example makes the
command line easier to read, it is not necessary. None of the command separators
needs to be surrounded by SPACEs or TABs.

\ CONTINUES A COMMAND

When you enter a long command line and the cursor reaches the right side of the
screen, you can use a backslash (\) character to continue the command on the next
line. The backslash quotes, or escapes, the NEWLINE character that follows it so that
the shell does not treat the NEWLINE as a command terminator. Enclosing a backslash
within single quotation marks turns off the power of a backslash to quote special
characters such as NEWLINE. Enclosing a backslash within double quotation marks has
no effect on the power of the backslash.

Although you can break a line in the middle of a word (token), it is typically easier
to break a line just before or after whitespace.

You can enter a RETURN in the middle of a quoted string on a command line without
using a backslash. The NEWLINE (RETURN) that you enter will then be part of the string:

$ echo "Please enter the three values

> required to complete the transaction."
Please enter the three values

required to complete the transaction.

In the three examples in this section, the shell does not interpret RETURN as a com-
mand terminator because it occurs within a quoted string. The > is a secondary
prompt indicating that the shell is waiting for you to continue the unfinished com-
mand. In the next example, the first RETURN is quoted (escaped) so the shell treats it as
a separator and does not interpret it literally.

$ echo "Please enter the three values \
> required to complete the transaction."
Please enter the three values required to complete the transaction.

Single quotation marks cause the shell to interpret a backslash literally:

$ echo 'Please enter the three values \
> required to complete the transaction.'
Please enter the three values \

required to complete the transaction.

288 CHAPTER9 THE BOURNE AGAIN SHELL

| AND & SEPARATE COMMANDS AND DO SOMETHING ELSE

The pipe symbol (I) and the background task symbol (&) are also command separa-
tors. They do not start execution of a command but do change some aspect of how
the command functions. The pipe symbol alters the source of standard input or the
destination of standard output. The background task symbol causes the shell to exe-
cute the task in the background so you get a prompt immediately and can continue
working on other tasks.

Each of the following command lines initiates a single job comprising three tasks:

$xlylz

$1s -1 | grep tmp | less
In the first job, the shell redirects standard output of task x to standard input of
task y and redirects y’s standard output to z’s standard input. Because it runs the
entire job in the foreground, the shell does not display a prompt until task z runs to
completion: Task z does not finish until task y finishes, and task y does not finish
until task x finishes. In the second job, task x is an Is -1 command, task y is grep
tmp, and task z is the pager less. The shell displays a long (wide) listing of the files
in the working directory that contain the string tmp, piped through less.

The next command line executes tasks d and e in the background and task f in the
foreground:

$d&ed&f

[1] 14271

[2] 14272
The shell displays the job number between brackets and the PID (process identifica-
tion) number for each process running in the background. You get a prompt as soon
as f finishes, which may be before d or e finishes.

Before displaying a prompt for a new command, the shell checks whether any back-
ground jobs have completed. For each job that has completed, the shell displays its
job number, the word Done, and the command line that invoked the job; then the
shell displays a prompt. When the job numbers are listed, the number of the last job
started is followed by a + character and the job number of the previous job is fol-
lowed by a — character. Any other jobs listed show a SPACE character. After running
the last command, the shell displays the following before issuing a prompt:

[1]- Done d

[2]+ Done e
The next command line executes all three tasks as background jobs. You get a shell
prompt immediately:

$d&ed&f&

[1] 14290

[2] 14291
[3] 14292

You can use pipes to send the output from one task to the next task and an amper-
sand (&) to run the entire job as a background task. Again the prompt comes back
immediately. The shell regards the commands joined by a pipe as being a single job.
That is, it treats all pipes as single jobs, no matter how many tasks are connected

SHELL BAsics 289

optional

with the pipe (I) symbol or how complex they are. The Bourne Again Shell shows
only one process placed in the background:

$dlel] f&
[1] 14295

() GRourPs COMMANDS

You can use parentheses to group commands. The shell creates a copy of itself,
called a subshell, for each group. It treats each group of commands as a job and cre-
ates a new process to execute each command (refer to “Process Structure” on
page 310 for more information on creating subshells). Each subshell (job) has its
own environment, meaning that it has its own set of variables with values that can
differ from those of other subshells.

The following command line executes commands a and b sequentially in the back-
ground while executing c in the background. The shell prompt returns immediately.
$ (a; b) &c&

[1] 15520
[2] 15521

The preceding example differs from the earlier example d & e & f & in that tasks a
and b are initiated sequentially, not concurrently.

Similarly the following command line executes a and b sequentially in the back-
ground and, at the same time, executes ¢ and d sequentially in the background. The
subshell running a and b and the subshell running ¢ and d run concurrently. The
prompt returns immediately.

$ (a; b) & (c; d) &

[1] 15528

[2] 15529

The next script copies one directory to another. The second pair of parentheses cre-
ates a subshell to run the commands following the pipe. Because of these parenthe-
ses, the output of the first tar command is available for the second tar command
despite the intervening cd command. Without the parentheses, the output of the
first tar command would be sent to cd and lost because cd does not process input
from standard input. The shell variables $1 and $2 represent the first and second
command line arguments (page 439), respectively. The first pair of parentheses,
which creates a subshell to run the first two commands, allows users to call cpdir
with relative pathnames. Without them the first cd command would change the
working directory of the script (and consequently the working directory of the sec-
ond cd command). With them only the working directory of the subshell is changed.

$ cat cpdir

(cd $1 ; tar -cf - .) | (cd $2 ; tar -xvf -)

$ cpdir /home/alex/sources /home/alex/memo/biblio
The cpdir command line copies the files and directories in the /home/alex/sources
directory to the directory named /home/alex/memo/biblio. This shell script is
almost the same as using cp with the —r option. Refer to the cp and tar man pages for
more information.

290 CHAPTER9 THE BOURNE AGAIN SHELL

JoB CONTROL

A job is a command pipeline. You run a simple job whenever you give the shell a
command. For example, type date on the command line and press RETURN: You have
run a job. You can also create several jobs with multiple commands on a single
command line:

$ find . -print | sort | 1pr & grep -1 alex /tmp/+% > alexfiles &
[1] 18839
[2] 18876

The portion of the command line up to the first & is one job consisting of three pro-
cesses connected by pipes: find, sort (page 153), and lpr (page 151). The second job is
a single process running grep. Both jobs have been put into the background by the
trailing & characters, so bash does not wait for them to complete before displaying
a prompt.

Using job control you can move commands from the foreground to the background
(and vice versa), stop commands temporarily, and list all the commands that are
running in the background or stopped.

jobs: LISTS JOBS

The jobs builtin lists all background jobs. The following sequence demonstrates
what happens when you give a jobs command. Here the sleep command runs in the
background and creates a background job that jobs reports on:

$ sleep 60 &

[1] 7809

$ jobs

[1] + Running sleep 60 &

fg: BRINGS A JOB TO THE FOREGROUND

The shell assigns job numbers to commands you run in the background (page 288).
Several jobs are started in the background in the next example. For each job the
shell lists the job number and PID number immediately, just before it issues a
prompt.

$ xclock &

[1] 1246

$ date &

[2] 1247

$ Sun Dec 2 11:44:40 PST 2007

[2]+ Done date

$ find /usr -name ace -print > findout &
[2] 1269

$ jobs

[1]- Running xclock &

[2]+ Running find /usr -name ace -print > findout &

Job numbers, which are discarded when a job is finished, can be reused. When you
start or put a job in the background, the shell assigns a job number that is one more
than the highest job number in use.

SHELL BAsics 291

In the preceding example, the jobs command lists the first job, xclock, as job 1. The
date command does not appear in the jobs list because it finished before jobs was
run. Because the date command was completed before find was run, the find com-
mand became job 2.

To move a background job into the foreground, use the fg builtin followed by the job
number. Alternatively, you can give a percent sign (%) followed by the job number as
a command. Either of the following commands moves job 2 into the foreground:

$ fg 2
or
$ %2

You can also refer to a job by following the percent sign with a string that uniquely
identifies the beginning of the command line used to start the job. Instead of the
preceding command, you could have used either fg %find or fg %f because both
uniquely identify job 2. If you follow the percent sign with a question mark and a
string, the string can match any part of the command line. In the preceding exam-
ple, fg %?ace also brings job 2 into the foreground.

Often the job you wish to bring into the foreground is the only job running in the
background or is the job that jobs lists with a plus (+). In these cases you can use fg
without an argument.

bg: SENDS A JOB TO THE BACKGROUND

To move the foreground job to the background, you must first suspend (temporarily
stop) the job by pressing the suspend key (usually CONTROL-Z). Pressing the suspend
key immediately suspends the job in the foreground. You can then use the bg builtin
to resume execution of the job in the background.

$ bg

If a background job attempts to read from the terminal, the shell stops it and noti-
fies you that the job has been stopped and is waiting for input. You must then move
the job into the foreground so that it can read from the terminal. The shell displays
the command line when it moves the job into the foreground.

$ (sleep 5; cat > mytext) &

[1] 1343

$ date

Sun Dec 2 11:58:20 PST 2007

[1]+ Stopped (sleep 5; cat >mytext)
$ fg

(sleep 5; cat >mytext)

Remember to let the cat out!

CONTROL-D

$

In the preceding example, the shell displays the job number and PID number of the
background job as soon as it starts, followed by a prompt. Demonstrating that you
can give a command at this point, the user gives the command date and its output

292 CHAPTER9 THE BOURNE AGAIN SHELL

appears on the screen. The shell waits until just before it issues a prompt (after date
has finished) to notify you that job 1 is stopped. When you give an fg command, the
shell puts the job in the foreground and you can enter the input that the command is
waiting for. In this case the input needs to be terminated with a CONTROL-D to signify
EOF (end of file). The shell then displays another prompt.

The shell keeps you informed about changes in the status of a job, notifying you
when a background job starts, completes, or is stopped, perhaps waiting for input
from the terminal. The shell also lets you know when a foreground job is sus-
pended. Because notices about a job being run in the background can disrupt your
work, the shell delays displaying these notices until just before it displays a
prompt. You can set notify (page 337) to make the shell display these notices with-
out delay.

If you try to exit from a shell while jobs are stopped, the shell issues a warning and
does not allow you to exit. If you then use jobs to review the list of jobs or you
immediately try to leave the shell again, the shell allows you to leave and terminates
the stopped jobs. Jobs that are running (not stopped) in the background continue to
run. In the following example, find (job 1) continues to run after the second exit ter-
minates the shell, but cat (job 2) is terminated:

$ find / -size +100k > $HOME/bigfiles 2>&l &
[1] 1426

$ cat > mytest &

[2] 1428

[2]+ Stopped cat >mytest

$ exit

exit

There are stopped jobs.

$ exit

exit

Togin:

MANIPULATING THE DIRECTORY STACK

The Bourne Again Shell allows you to store a list of directories you are working
with, enabling you to move easily among them. This list is referred to as a stack. It
is analogous to a stack of dinner plates: You typically add plates to and remove
plates from the top of the stack, creating a last-in first-out, (LIFO) stack.

dirs: DISPLAYS THE STACK

The dirs builtin displays the contents of the directory stack. If you call dirs when the
directory stack is empty, it displays the name of the working directory:

$ dirs
~/1iterature

SHELL BAasics 293

D
€D
€& €@ &5
@

Figure 9-2 The directory structure in the examples

The dirs builtin uses a tilde (~) to represent the name of the home directory. The
examples in the next several sections assume that you are referring to the directory
structure shown in Figure 9-2.

pushd: PUSHES A DIRECTORY ON THE STACK

To change directories and at the same time add a new directory to the top of the
stack, use the pushd (push directory) builtin. In addition to changing directories, the
pushd builtin displays the contents of the stack. The following example is illustrated
in Figure 9-3:

$ pushd ../demo
~/demo ~/Titerature
$ pwd
/home/sam/demo

$ pushd ../names
~/names ~/demo ~/literature

$ pwd

/home/sam/names
@ pushd

(@) pushd

Figure 9-3 Creating a directory stack

294 CHAPTER9 THE BOURNE AGAIN SHELL

pushd pushd

oD
Hoo

Figure 9-4 Using pushd to change working directories

When you use pushd without an argument, it swaps the top two directories on the
stack and makes the new top directory (which was the second directory) become the
new working directory (Figure 9-4):

$ pushd

~/demo ~/names ~/literature
$ pwd

/home/sam/demo

Using pushd in this way, you can easily move back and forth between two directo-
ries. You can also use cd - to change to the previous directory, whether or not you
have explicitly created a directory stack. To access another directory in the stack,
call pushd with a numeric argument preceded by a plus sign. The directories in the
stack are numbered starting with the top directory, which is number 0. The follow-
ing pushd command continues with the previous example, changing the working
directory to literature and moving literature to the top of the stack:

$ pushd +2

~/Tliterature ~/demo ~/names
$ pwd

/home/sam/11iterature

popd: POPS A DIRECTORY OFF THE STACK

To remove a directory from the stack, use the popd (pop directory) builtin. As the fol-
lowing example and Figure 9-5 show, popd used without an argument removes the top
directory from the stack and changes the working directory to the new top directory:

$ dirs

~/1iterature ~/demo ~/names
$ popd

~/demo ~/names

$ pwd

/home/sam/demo

To remove a directory other than the top one from the stack, use popd with a
numeric argument preceded by a plus sign. The following example removes direc-
tory number 1, demo:

$ dirs

~/1iterature ~/demo ~/names
$ popd +1

~/Titerature ~/names

PARAMETERS AND VARIABLES 295

popd

Figure 9-5 Using popd to remove a directory from the stack

Removing a directory other than directory number 0 does not change the working
directory.

PARAMETERS AND VARIABLES

Variables

User-created
variables

Within a shell, a shell parameter is associated with a value that is accessible to the
user. There are several kinds of shell parameters. Parameters whose names consist of
letters, digits, and underscores are often referred to as shell variables, or simply
variables. A variable name must start with a letter or underscore, not with a num-
ber. Thus A76, MY_CAT, and ___X___ are valid variable names, whereas
69TH_STREET (starts with a digit) and MY-NAME (contains a hyphen) are not.

Shell variables that you name and assign values to are user-created variables. You
can change the values of user-created variables at any time, or you can make them
readonly so that their values cannot be changed. You can also make user-created
variables global. A global variable (also called an environment variable) is available
to all shells and other programs you fork from the original shell. One naming con-
vention is to use only uppercase letters for global variables and to use mixed-case or
lowercase letters for other variables. Refer to “Locality of Variables” on page 434
for more information on global variables.

To assign a value to a variable in the Bourne Again Shell, use the following syntax:
VARIABLE=value

There can be no whitespace on either side of the equal sign (=). An example assign-
ment follows:

$ myvar=abc

The Bourne Again Shell permits you to put variable assignments on a command
line. These assignments are local to the command shell—that is, they apply to the
command only. The my_script shell script displays the value of TEMPDIR. The fol-
lowing command runs my_script with TEMPDIR set to /home/sam/temp. The echo
builtin shows that the interactive shell has no value for TEMPDIR after running
my_script. If TEMPDIR had been set in the interactive shell, running my_script in
this manner would have had no effect on its value.

296 CHAPTER 9

THE BOURNE AGAIN SHELL

Keyword variables

Positional and
special parameters

$ cat my_script

echo $TEMPDIR

$ TEMPDIR=/home/sam/temp my_script
/home/sam/temp

$ echo $TEMPDIR

$

Keyword shell variables (or simply keyword variables) have special meaning to the
shell and usually have short, mnemonic names. When you start a shell (by logging
in, for example), the shell inherits several keyword variables from the environment.
Among these variables are HOME, which identifies your home directory, and
PATH, which determines which directories the shell searches and in what order to
locate commands that you give the shell. The shell creates and initializes (with
default values) other keyword variables when you start it. Still other variables do
not exist until you set them.

You can change the values of most of the keyword shell variables at any time but it
is usually not necessary to change the values of keyword variables initialized in the
/etc/profile or /etc/csh.cshrc systemwide startup files. If you need to change the
value of a bash keyword variable, do so in one of your startup files (page 277). Just
as you can make user-created variables global, so you can make keyword variables
global; this is usually done automatically in the startup files. You can also make a
keyword variable readonly.

The names of positional and special parameters do not resemble variable names.
Most of these parameters have one-character names (for example, 1, ?, and #) and
are referenced (as are all variables) by preceding the name with a dollar sign ($1, $2,
and $#). The values of these parameters reflect different aspects of your ongoing
interaction with the shell.

Whenever you give a command, each argument on the command line becomes the
value of a positional parameter. Positional parameters (page 438) enable you to
access command line arguments, a capability that you will often require when you
write shell scripts. The set builtin (page 442) enables you to assign values to posi-
tional parameters.

Other frequently needed shell script values, such as the name of the last command
executed, the number of command line arguments, and the status of the most
recently executed command, are available as special parameters. You cannot assign
values to special parameters.

USER-CREATED VARIABLES

The first line in the following example declares the variable named person and ini-
tializes it with the value alex:

$ person=alex
$ echo person
person

$ echo $person
alex

PARAMETERS AND VARIABLES 297

Quoting the $

SPACES

Because the echo builtin copies its arguments to standard output, you can use it to
display the values of variables. The second line of the preceding example shows that
person does not represent alex. Instead, the string person is echoed as person. The
shell substitutes the value of a variable only when you precede the name of the vari-
able with a dollar sign ($). The command echo $person displays the value of the
variable person; it does not display $person because the shell does not pass $person
to echo as an argument. Because of the leading $, the shell recognizes that $person
is the name of a variable, substitutes the value of the variable, and passes that value
to echo. The echo builtin displays the value of the variable—not its name—never
knowing that you called it with a variable.

You can prevent the shell from substituting the value of a variable by quoting the
leading $. Double quotation marks do not prevent the substitution; single quotation
marks or a backslash (\) do.

$ echo $person
alex

$ echo "$person"
alex

$ echo '$person'’
$person

$ echo \$person
$person

Because they do not prevent variable substitution but do turn off the special mean-
ings of most other characters, double quotation marks are useful when you assign
values to variables and when you use those values. To assign a value that contains
SPACEs or TABs to a variable, use double quotation marks around the value. Although
double quotation marks are not required in all cases, using them is a good habit.

$ person="alex and jenny"
$ echo $person
alex and jenny

$ person=alex and jenny
bash: and: command not found

When you reference a variable that contains TABs or multiple adjacent SPACEs, you
need to use quotation marks to preserve the spacing. If you do not quote the vari-
able, the shell collapses each string of blank characters into a single SPACE before
passing the variable to the utility:

$ person="alex and jenny"
$ echo $person

alex and jenny

$ echo "$person"

alex and jenny

When you execute a command with a variable as an argument, the shell replaces the
name of the variable with the value of the variable and passes that value to the pro-
gram being executed. If the value of the variable contains a special character, such
as * or 2, the shell may expand that variable.

298 CHAPTER 9

THE BOURNE AGAIN SHELL

Pathname
expansion in
assignments

optional
Braces

The first line in the following sequence of commands assigns the string alex* to the
variable memo. The Bourne Again Shell does not expand the string because bash
does not perform pathname expansion (page 239) when assigning a value to a vari-
able. All shells process a command line in a specific order. Within this order bash
expands variables before it interprets commands. In the following echo command
line, the double quotation marks quote the asterisk (%) in the expanded value of
$memo and prevent bash from performing pathname expansion on the expanded

memo variable before passing its value to the echo command:

$ memo=alex:
$ echo "$memo"
alex=*

All shells interpret special characters as special when you reference a variable that
contains an unquoted special character. In the following example, the shell expands
the value of the memo variable because it is not quoted:

$ 1s

alex.report

alex.summary

$ echo $memo

alex.report alex.summary

Here the shell expands the $memo variable to alex:*, expands alex* to alex.report
and alex.summary, and passes these two values to echo.

The $VARIABLE syntax is a special case of the more general syntax $§{VARIABLE},
in which the variable name is enclosed by ${}. The braces insulate the variable
name. Braces are necessary when catenating a variable value with a string:

$ PREF=counter

$ WAY=$PREFclockwise
$ FAKE=$PREFfeit

$ echo $WAY $FAKE

$

The preceding example does not work as planned. Only a blank line is output
because, although the symbols PREFclockwise and PREFfeit are valid variable
names, they are not set. By default bash evaluates an unset variable as an empty
(null) string and displays this value. To achieve the intent of these statements, refer
to the PREF variable using braces:

$ PREF=counter

$ WAY=${PREF}clockwise

$ FAKE=${PREF}feit

$ echo $WAY $FAKE
counterclockwise counterfeit

PARAMETERS AND VARIABLES 299

The Bourne Again Shell refers to the arguments on its command line by position,
using the special variables $1, $2, $3, and so forth up to $9. If you wish to refer to
arguments past the ninth argument, you must use braces: ${10}. The name of the
command is held in $0 (page 439).

unset: REMOVES A VARIABLE

Unless you remove a variable, it exists as long as the shell in which it was created
exists. To remove the value of a variable but not the variable itself, set the value
to null:

$ person=
$ echo $person

$

You can remove a variable with the unset builtin. To remove the variable person,
give the following command:

$ unset person

VARIABLE ATTRIBUTES

This section discusses attributes and explains how to assign them to variables.

readonly: MAKES THE VALUE OF A VARIABLE PERMANENT

You can use the readonly builtin to ensure that the value of a variable cannot be
changed. The next example declares the variable person to be readonly. You must
assign a value to a variable before you declare it to be readonly; you cannot change
its value after the declaration. When you attempt to unset or change the value of a
readonly variable, the shell displays an error message:

$ person=jenny

$ echo $person

jenny

$ readonly person

$ person=helen

bash: person: readonly variable

If you use the readonly builtin without an argument, it displays a list of all readonly
shell variables. This list includes keyword variables that are automatically set as
readonly as well as keyword or user-created variables that you have declared as
readonly. See “Listing variable attributes” on page 300 for an example (readonly
and declare -r produce the same output).

declare AND typeset: ASSIGN ATTRIBUTES TO VARIABLES

The declare and typeset builtins (two names for the same command) set attributes
and values for shell variables. Table 9-3 lists five of these attributes.

300 CHAPTER9 THE BOURNE AGAIN SHELL

Listing variable
attributes

Variable attributes (typeset or declare)

Attribute Meaning
-a Declares a variable as an array (page 432)
—f Declares a variable to be a function name (page 331)

=i Declares a variable to be of type integer (page 301)
-t Makes a variable readonly; also readonly (page 299)

X Exports a variable (makes it global); also export (page 434)

The following commands declare several variables and set some attributes. The first
line declares personl and assigns it a value of alex. This command has the same
effect with or without the word declare.

$ declare personl=alex

$ declare -r person2=jenny
$ declare -rx person3=helen
$ declare -x person4

The readonly and export builtins are synonyms for the commands declare —r and
declare —x, respectively. It is legal to declare a variable without assigning a value to
it, as the preceding declaration of the variable person4 illustrates. This declaration
makes person4 available to all subshells (makes it global). Until an assignment is
made to the variable, it has a null value.

You can list the options to declare separately in any order. The following is equiva-
lent to the preceding declaration of person3:

$ declare -x -r person3=helen

Use the + character in place of — when you want to remove an attribute from a vari-
able. You cannot remove a readonly attribute however. After the following com-
mand is given, the variable person3 is no longer exported but it is still readonly.

$ declare +x person3

You can also use typeset instead of declare.

Without any arguments or options, the declare builtin lists all shell variables. The
same list is output when you run set (page 442) without any arguments.

If you use a declare builtin with options but no variable names as arguments, the
command lists all shell variables that have the indicated attributes set. For example,
the option -r with declare gives a list of all readonly shell variables. This list is the
same as that produced by a readonly command without any arguments. After the
declarations in the preceding example have been given, the results are as follows:

$ declare -r

declare -ar BASH_VERSINFO='([@]="2" [1]="@5b" [2]="@" [3]="1" ...)'
declare -ir EUID="500"

declare -ir PPID="936"

PARAMETERS AND VARIABLES 301

Integer

declare -r SHELLOPTS="braceexpand:emacs:hashall:histexpand:history:..."
declare -ir UID="500"

declare -r person2="jenny"

declare -rx person3="helen"

The first five entries are keyword variables that are automatically declared as read-
only. Some of these variables are stored as integers (—i). The —a option indicates that
BASH_VERSINFO is an array variable; the value of each element of the array is
listed to the right of an equal sign.

By default the values of variables are stored as strings. When you perform arith-
metic on a string variable, the shell converts the variable into a number, manipulates
it, and then converts it back to a string. A variable with the integer attribute is
stored as an integer. Assign the integer attribute as follows:

$ typeset -i COUNT

KEYWORD VARIABLES

Tilde (~)

Keyword variables either are inherited or are declared and initialized by the shell
when it starts. You can assign values to these variables from the command line or
from a startup file. Typically you want these variables to apply to all subshells you
start as well as to your login shell. For those variables not automatically exported
by the shell, you must use export (page 434) to make them available to child shells.

HOME: YOUR HOME DIRECTORY

By default your home directory is your working directory when you log in. Your
home directory is determined when you establish your account; its name is stored in
the /etc/passwd file.

$ grep sam /etc/passwd
sam:x:501:501:Sam S. x301:/home/sam:/bin/bash

When you log in, the shell inherits the pathname of your home directory and assigns
it to the variable HOME. When you give a ¢d command without an argument, cd
makes the directory whose name is stored in HOME the working directory:

$ pwd
/home/alex/Tlaptop
$ echo $HOME
/home/aTlex

$ cd

$ pwd

/home/alex

This example shows the value of the HOME variable and the effect of the cd buil-
tin. After you execute cd without an argument, the pathname of the working direc-
tory is the same as the value of HOME: your home directory.

The shell uses the value of HOME to expand pathnames that use the shorthand tilde
(~) notation (page 190) to denote a user’s home directory. The following example

302 CHAPTER9 THE BOURNE AGAIN SHELL

Working directory

uses echo to display the value of this shortcut and then uses Is to list the files in Alex’s
laptop directory, which is a subdirectory of his home directory:

$ echo ~

/home/aTlex

$ 1s ~/laptop

tester count Tineup

PATH: WHERE THE SHELL LOOKS FOR PROGRAMS

When you give the shell an absolute or relative pathname rather than a simple file-
name as a command, it looks in the specified directory for an executable file with
the specified filename. If the file with the pathname you specified does not exist, the
shell reports command not found. If the file exists as specified but you do not have
execute permission for it, or in the case of a shell script you do not have read and
execute permission for it, the shell reports Permission denied.

If you give a simple filename as a command, the shell searches through certain
directories for the program you want to execute. It looks in several directories for a
file that has the same name as the command and that you have execute permission
for (a compiled program) or read and execute permission for (a shell script). The
PATH shell variable controls this search.

The default value of PATH is determined when bash is compiled. It is not set in a
startup file, although it may be modified there. Normally the default specifies that
the shell search several system directories used to hold common commands and
then search the working directory. These system directories include /bin and
/ust/bin and other directories appropriate to the local system. When you give a
command, if the shell does not find the executable—and, in the case of a shell
script, readable—file named by the command in any of the directories listed in
PATH, the shell generates one of the aforementioned error messages.

The PATH variable specifies the directories in the order the shell should search them.
Each directory must be separated from the next by a colon. The following command
sets PATH so that a search for an executable file starts with the /usr/local/bin direc-
tory. If it does not find the file in this directory, the shell first looks in /bin, and then
in /usr/bin. If the search fails in those directories, the shell looks in the bin directory,
a subdirectory of the user’s home directory. Finally the shell looks in the working
directory. Exporting PATH makes its value accessible to subshells:

$ export PATH=/usr/local/bin:/bin:/usr/bin:~/bin:

A null value in the string indicates the working directory. In the preceding example,
a null value (nothing between the colon and the end of the line) appears as the last
element of the string. The working directory is represented by a leading colon (not
recommended; see the following security tip), a trailing colon (as in the example), or
two colons next to each other anywhere in the string. You can also represent the
working directory explicitly with a period (.).

Because Linux stores many executable files in directories named bin (binary), users
typically put their own executable files in their own ~/bin directories. If you put

PARAMETERS AND VARIABLES 303

your own bin directory at the end of your PATH, as in the preceding example, the
shell looks there for any commands that it cannot find in directories listed earlier
in PATH.

PATH and security

Do not put the working directory first in PATH when security is a concern. If you are working as
root, you should never put the working directory first in PATH. It is common for root’s PATH to
omit the working directory entirely. You can always execute a file in the working directory by
prepending ./ to the name: ./Is.

Putting the working directory first in PATH can create a security hole. Most people type Is as the
first command when entering a directory. If the owner of a directory places an executable file
named Is in the directory, and the working directory appears first in a user’s PATH, the user giving
an Is command from the directory executes the Is program in the working directory instead of the
system Is utility, possibly with undesirable results.

If you want to add directories to PATH, you can reference the old value of the
PATH variable while you are setting PATH to a new value (but see the preceding
security tip). The following command adds /usr/local/bin to the beginning of the
current PATH and the bin directory in the user’s home directory (~/bin) to the end:

$ PATH=/usr/local/bin:$PATH:~/bin

MAIL: WHERE YOUR MAIL IS KEPT

The MAIL variable contains the pathname of the file that holds your mail (your
mailbox, usually /var/spool/mail/name, where name is your username). If MAIL is
set and MAILPATH (next) is not set, the shell informs you when mail arrives in the
file specified by MAIL. In a graphical environment you can unset MAIL so that the
shell does not display mail reminders in a terminal emulator window (assuming you
are using a graphical mail program).

The MAILPATH variable contains a list of filenames separated by colons. If this
variable is set, the shell informs you when any one of the files is modified (for exam-
ple, when mail arrives). You can follow any of the filenames in the list with a ques-
tion mark (?), followed by a message. The message replaces the you have mail
message when you get mail while you are logged in.

The MAILCHECK variable specifies how often, in seconds, the shell checks for new
mail. The default is 60 seconds. If you set this variable to zero, the shell checks
before each prompt.

PS1: USER PROMPT (PRIMARY)

The default Bourne Again Shell prompt is a dollar sign ($). When you run bash with
root privileges, you may have a pound sign (#) prompt. The PS1 variable holds the
prompt string that the shell uses to let you know that it is waiting for a command.
When you change the value of PS1, you change the appearance of your prompt.

304 CHAPTER9 THE BOURNE AGAIN SHELL

You can customize the prompt displayed by PS1. For example, the assignment
$ PS1="[\u@\h \W \!1$ "

displays the following prompt:
[user@bost directory event]$

where user is the username, bost is the hostname up to the first period, directory is
the basename of the working directory, and event is the event number of the current
command.

If you are working on more than one system, it can be helpful to incorporate the
system name into your prompt. For example, you might change the prompt to the
name of the system you are using, followed by a colon and a SPACE (a SPACE at the end
of the prompt makes the commands that you enter after the prompt easier to read):

$ PS1="$(hostname): "
bravo.example.com: echo test
test

bravo.example.com:

The first example that follows changes the prompt to the name of the local host, a
SPACE, and a dollar sign (or, if the user is running with root privileges, a pound sign).
The second example changes the prompt to the time followed by the name of the
user. The third example changes the prompt to the one used in this book (a pound
sign for root and a dollar sign otherwise):

$ PS1="\h \$ '
bravo $

$ PS1="\@ \u § '
09:44 PM alex $

$ PS1="\$ '
$

Table 9-4 describes some of the symbols you can use in PS1. For a complete list of spe-

cial characters you can use in the prompt strings, open the bash man page and search
for the second occurrence of PROMPTING (give the command /PROMPTING and
then press n).

PS1 symbols
Symbol Display in prompt
\$ # if the user is running with root privileges; otherwise, $
\w Pathname of the working directory
\W Basename of the working directory
\! Current event (history) number (page 317)

\d Date in Weekday Month Date format

PARAMETERS AND VARIABLES 305

PS1 symbols (continued)

\h Machine hostname, without the domain

\H Full machine hostname, including the domain

\u Username of the current user

\@ Current time of day in 12-hour, AM/PM format

\T Current time of day in 12-hour HH:MM:SS format
\A Current time of day in 24-hour HH:MM format

\t Current time of day in 24-hour HH:MM:SS format

PS2: USER PROMPT (SECONDARY)

Prompt String 2 is a secondary prompt that the shell stores in PS2. On the first line
of the next example, an unclosed quoted string follows echo. The shell assumes that
the command is not finished and, on the second line, gives the default secondary
prompt (>). This prompt indicates that the shell is waiting for the user to continue
the command line. The shell waits until it receives the quotation mark that closes
the string and then executes the command:

$ echo "demonstration of prompt string
> 2"

demonstration of prompt string

2

$ PS2="secondary prompt:
$ echo "this demonstrates
secondary prompt: prompt string 2"
this demonstrates

prompt string 2

The second command changes the secondary prompt to secondary prompt: fol-
lowed by a SPACE. A multiline echo demonstrates the new prompt.

PS3: MENU PROMPT
PS3 holds the menu prompt for the select control structure (page 426).

PS4: DEBUGGING PROMPT
PS4 holds the bash debugging symbol (page 408).

IFS: SEPARATES INPUT FIELDS (WORD SPLITTING)

The IFS (Internal Field Separator) shell variable specifies the characters that you
can use to separate arguments on a command line and has the default value of
SPACE TAB NEWLINE. Regardless of the value of IFS, you can always use one or more
SPACE or TAB characters to separate arguments on the command line, provided that
these characters are not quoted or escaped. When you assign IFS character val-
ues, these characters can also separate fields but only if they undergo expansion.
This type of interpretation of the command line is called word splitting.

306 CHAPTER9 THE BOURNE AGAIN SHELL

Be careful when changing IFS

Changing IFS has a variety of side effects so work cautiously. You may find it useful to first save
the value of IFS before changing it; you can easily then restore the original value if you get unex-
pected results. Alternatively, you can fork a new shell with a hash command before experimenting
with IFS; if you get into trouble, you can exit back to the old shell, where IFS is working properly.
You can also set IFS to its default value with the following command:

$ IFS=' \t\n'

The following example demonstrates how setting IFS can affect the interpretation
of a command line:

$ a=w:ix:y:z

$ cat $a

cat: w:x:y:z: No such file or directory

$ IFS=":"

$ cat $a

cat: w: No such file or directory

cat: x: No such file or directory

cat: y: No such file or directory

cat: z: No such file or directory

The first time cat is called, the shell expands the variable a, interpreting the string
w:x:y:z as a single word to be used as the argument to cat. The cat utility cannot
find a file named w:x:y:z and reports an error for that filename. After IFS is set to a
colon (:), the shell expands the variable a into four words, each of which is an argu-
ment to cat. Now cat reports an error for four separate files: w, x, y, and z. Word
splitting based on the colon (:) takes place only after the variable a is expanded.

The shell splits all expanded words on a command line according to the separating
characters found in IFS. When there is no expansion, there is no splitting. Consider
the following commands:

$ IFS=IIpll
$ export VAR

Although IFS is set to p, the p on the export command line is not expanded so the
word export is not split.

The following example uses variable expansion in an attempt to produce an export
command:

$ IFS="p"

$ aa=export
$ echo $aa
ex ort

This time expansion occurs so that the character p in the token export is interpreted
as a separator as the preceding echo command shows. Now when you try to use the
value of the aa variable to export the VAR variable, the shell parses the $aa VAR
command line as ex ort VAR. The effect is that the command line starts the ex edi-
tor with two filenames: ort and VAR.

PARAMETERS AND VARIABLES 307

$ $aa VAR

2 files to edit

"ort" [New File]

Entering Ex mode. Type "visual" to go to Normal mode.
q

E173: 1 more file to edit

q

$

If you unset IFS, only SPACEs and TABs work as field separators.

Multiple separator characters

Although sequences of multiple SPACE or TAB characters are treated as single separators, each
occurrence of another field-separator character acts as a separator.

CDPATH: BROADENS THE SCOPE OF cd

The CDPATH variable allows you to use a simple filename as an argument to the cd
builtin to change the working directory to a directory other than a child of the
working directory. If you have several directories you like to work out of, this vari-
able can speed things up and save you the tedium of using cd with longer pathnames
to switch among them.

When CDPATH is not set and you specify a simple filename as an argument to cd,
cd searches the working directory for a subdirectory with the same name as the
argument. If the subdirectory does not exist, cd displays an error message. When
CDPATH is set, cd searches for an appropriately named subdirectory in the directo-
ries in the CDPATH list. If cd finds one, that directory becomes the working direc-
tory. With CDPATH set, you can use cd and a simple filename to change the
working directory to a child of any of the directories listed in CDPATH.

The CDPATH variable takes on the value of a colon-separated list of directory
pathnames (similar to the PATH variable). It is usually set in the ~/.bash_profile
startup file with a command line such as the following:

export CDPATH=$HOME:$HOME/T1iterature

This command causes cd to search your home directory, the literature directory, and
then the working directory when you give a cd command. If you do not include the
working directory in CDPATH, cd searches the working directory if the search of
all the other directories in CDPATH fails. If you want cd to search the working
directory first (which you should never do when you are working with root privi-
leges—refer to the tip on page 303), include a null string, represented by two colons
(:2), as the first entry in CDPATH:

export CDPATH=::$HOME:$HOME/11iterature

If the argument to the cd builtin is an absolute pathname—one starting with a slash
(/)—the shell does not consult CDPATH.

308 CHAPTER9 THE BOURNE AGAIN SHELL

KEYWORD VARIABLES: A SUMMARY
Table 9-5 lists the bash keyword variables.

Variable
BASH_ENV
CDPATH
COLUMNS
FCEDIT
HISTFILE

HISTFILESIZE
HISTSIZE

HOME

IFS
INPUTRC
LANG

Lc_-.':
LINES
MAIL

MAILCHECK
MAILPATH

PATH

PROMPT_COMMAND

PS1
PS2
PS3
PS4
REPLY

bash keyword variables

Value

The pathname of the startup file for noninteractive shells (page 278)
The cd search path (page 307)

The width of the display used by select (page 425)

The name of the editor that fc uses by default (page 315)

The pathname of the file that holds the history list (default: ~/.bash_history;
page 312)

The maximum number of entries saved in HISTFILE (default: 500; page 312)

The maximum number of entries saved in the history list (default: 500;
page 312)

The pathname of the user’s home directory (page 301); used as the default
argument for cd and in tilde expansion (page 190)

Internal Field Separator (page 305); used for word splitting (page 345)
The pathname of the Readline startup file (default: ~/.inputrc; page 325)

The locale category when that category is not specifically set with an LC_=
variable

A group of variables that specify locale categories including LC_COLLATE,
LC_CTYPE, LC_MESSAGES, and LC_NUMERIC; use the locale builtin to
display a complete list with values

The height of the display used by select (page 425)
The pathname of the file that holds a user’s mail (page 303)
How often, in seconds, bash checks for mail (page 303)

A colon-separated list of file pathnames that bash checks for mail in
(page 303)

A colon-separated list of directory pathnames that bash looks for com-
mands in (page 302)

A command that bash executes just before it displays the primary prompt
Prompt String 1; the primary prompt (default: "\s—=\W$ '; page 303)

Prompt String 2; the secondary prompt (default: *> *; page 305)

The prompt issued by select (page 425)

The bash debugging symbol (page 408)

Holds the line that read accepts (page 446); also used by select (page 425)

SPECIAL CHARACTERS 309

SPECIAL CHARACTERS

Table 9-6 lists most of the characters that are special to the bash shell.

Shell special characters

Character
NEWLINE

0

&
|

>>

<<

(dot builtin)

{}
(null builtin)

&&
(Boolean AND)

[| (Boolean OR)

I (Boolean NQT)

$0)
[1

Use
Initiates execution of a command (page 286)
Separates commands (page 286)

Groups commands (page 289) for execution by a subshell or identifies a func-
tion (page 331)

Executes a command in the background (pages 237 and 288)

Sends standard output of preceding command to standard input of following
command (pipe; page 288)

Redirects standard output (page 228)

Appends standard output (page 232)

Redirects standard input (page 230)

Here document (page 427)

Any string of zero or more characters in an ambiguous file reference (page 240)
Any single character in an ambiguous file reference (page 239)

Quotes the following character (page 146)

Quotes a string, preventing all substitution (page 146)

Quotes a string, allowing only variable and command substitution (pages 146
and 297)

Performs command substitution (page 344)

Character class in an ambiguous file reference (page 241)
References a variable (page 295)

Executes a command (only at the beginning of a line, page 279)
Begins a comment (page 285)

Used to surround the contents of a function (page 331)
Returns frue (page 453)

Executes command on right only if command on left succeeds (returns a zero
exit status, page 464)

Executes command on right only if command on left fails (returns a nonzero
exit status; page 464)

Reverses exit status of a command
Performs command substitution (preferred form; page 344)
Evaluates an arithmetic expression (page 342)

310 CHAPTER9 THE BOURNE AGAIN SHELL

PROCESSES

A process is the execution of a command by Linux. The shell that starts when you
log in is a command, or a process, like any other. When you give the name of a
Linux utility on the command line, you initiate a process. When you run a shell
script, another shell process is started and additional processes are created for each
command in the script. Depending on how you invoke the shell script, the script is
run either by the current shell or, more typically, by a subshell (child) of the current
shell. A process is not started when you run a shell builtin, such as cd.

PROCESS STRUCTURE

fork system call Like the file structure, the process structure is hierarchical, with parents, children,
and even a root. A parent process forks a child process, which in turn can fork other
processes. (The term fork indicates that, as with a fork in the road, one process
turns into two. Initially the two forks are identical except that one is identified as
the parent and one as the child. You can also use the term spawn; the words are
interchangeable.) The operating system routine, or system call, that creates a new
process is named fork.

When Linux begins execution when a system is started, it starts init, a single process
called a spontaneous process, with PID number 1. This process holds the same posi-
tion in the process structure as the root directory does in the file structure: It is the
ancestor of all processes that the system and users work with. When the system is in
multiuser mode, init runs getty or mingetty processes, which display login: prompts
on terminals and virtual consoles. When someone responds to the prompt and
presses RETURN, getty hands control over to a utility named login, which checks the
username and password combination. After the user logs in, the login process
becomes the user’s shell process.

PROCESS IDENTIFICATION

PID number Linux assigns a unique PID (process identification) number at the inception of each
process. As long as a process exists, it keeps the same PID number. During one ses-
sion the same process is always executing the login shell. When you fork a new pro-
cess—for example, when you use an editor—the PID number of the new (child)
process is different from that of its parent process. When you return to the login
shell, it is still being executed by the same process and has the same PID number as
when you logged in.

The following example shows that the process running the shell forked (is the parent
of) the process running ps (page 238). When you call it with the —f option, ps dis-
plays a full listing of information about each process. The line of the ps display with
bash in the CMD column refers to the process running the shell. The column headed
by PID identifies the PID number. The column headed PPID identifies the PID num-
ber of the parent of the process. From the PID and PPID columns you can see that
the process running the shell (PID 21341) is the parent of the process running sleep

PROCESSES 311

(PID 22789). The parent PID number of sleep is the same as the PID number of the
shell (21341).

$ sleep 10 &

[1] 22789

$ ps -f

UID PID PPID C STIME TTY TIME CMD

alex 21341 21340 0 10:42 pts/16 00:00:00 bash
alex 22789 21341 © 17:30 pts/16 00:00:00 sleep 10
alex 22790 21341 © 17:30 pts/16 00:00:00 ps -f

Refer to the ps man page for more information on ps and the columns it displays
with the —f option. A second pair of sleep and ps —f commands shows that the shell
is still being run by the same process but that it forked another process to run sleep:

$ sleep 10 &

[1] 22791

$ ps -f

UID PID PPID C STIME TTY TIME CMD

alex 21341 21340 0 10:42 pts/16 00:00:00 bash
alex 22791 21341 © 17:31 pts/16 00:00:00 sleep 10
alex 22792 21341 © 17:31 pts/16 00:00:00 ps -f

You can also use pstree (or ps ——forest, with or without the —e option) to see the
parent—child relationship of processes. The next example shows the —p option to
pstree, which causes it to display PID numbers:

$ pstree -p
init(1l)-+-acpid(1395)
|-atd(1758)
|-crond(1702)
| -kdeinit(2223)-+-firefox(8914)---run-mozilla.sh(8920)---firefox-bin(8925)
| | -gaim(2306)
| | -gqview(14062)
| | -kdeinit(2228)
| | -kdeinit(2294)
| | -kdeinit(2314)-+-bash(2329)---ssh(2561)
| | | -bash(2339)
| | '-bash(15821)---bash(16778)
| | -kdeinit(16448)
| | -kdeinit(20888)
| | -oclock(2317)
|

' —-pam-panel-icon(2305)---pam_timestamp_c(2307)

|-Togin(1823)---bash(20986)-+-pstree(21028)

'-sTeep(21026)

The preceding output is abbreviated. The line that starts with —kdeinit shows a
graphical user running many processes, including firefox, gaim, and oclock. The
line that starts with —login shows a textual user running sleep in the background
while running pstree in the foreground. Refer to “$$: PID Number” on page 437
for a description of how to instruct the shell to report on PID numbers.

312 CHAPTER9 THE BOURNE AGAIN SHELL

EXECUTING A COMMAND

forkand sleep When you give the shell a command, it usually forks (spawns) a child process to
execute the command. While the child process is executing the command, the par-
ent process sleeps. While a process is sleeping, it does not use any computer time
but remains inactive, waiting to wake up. When the child process finishes executing
the command, it tells its parent of its success or failure via its exit status and then
dies. The parent process (which is running the shell) wakes up and prompts for
another command.

Background process When you run a process in the background by ending a command with an amper-
sand (&), the shell forks a child process without going to sleep and without waiting
for the child process to run to completion. The parent process, which is executing the
shell, reports the job number and PID number of the child and prompts for another
command. The child process runs in the background, independent of its parent.

Builtins Although the shell forks a process to run most of the commands you give it, some
commands are built into the shell. The shell does not need to fork a process to run
builtins. For more information refer to “Builtins” on page 243.

Variables Within a given process, such as your login shell or a subshell, you can declare, initial-
ize, read, and change variables. By default however, a variable is local to a process.
When a process forks a child process, the parent does not pass the value of a variable
to the child. You can make the value of a variable available to child processes (global)
by using the export builtin (page 434).

HISTORY

The history mechanism, a feature adapted from the C Shell, maintains a list of
recently issued command lines, also called events, providing a quick way to reexe-
cute any of the events in the list. This mechanism also enables you to execute varia-
tions of previous commands and to reuse arguments from them. You can replicate
complicated commands and arguments that you used earlier in this login session or
in a previous one and enter a series of commands that differ from one another in
minor ways. The history list also serves as a record of what you have done. It can
prove helpful when you have made a mistake and are not sure what you did or
when you want to keep a record of a procedure that involved a series of commands.

The history builtin displays the history list. If it does not, read on—you need to set
some variables.

VARIABLES THAT CONTROL HISTORY

The value of the HISTSIZE variable determines the number of events preserved in
the history list during a session. A value in the range of 100 to 1,000 is normal.

When you exit from the shell, the most recently executed commands are saved in the
file given by the HISTFILE variable (the default is ~/.bash_history). The next time
you start the shell, this file initializes the history list. The value of the HISTFILESIZE

History 313

Event number

variable determines the number of lines of history saved in HISTFILE (not necessar-
ily the same as HISTSIZE). HISTSIZE holds the number of events remembered dur-
ing a session, HISTFILESIZE holds the number remembered between sessions, and
the file designated by HISTFILE holds the history list. See Table 9-7.

History variables

Variable Default Function

HISTSIZE 500 events Maximum number of events saved during a session
HISTFILE ~/.bash_history Location of the history file

HISTFILESIZE 500 events Maximum number of events saved between sessions

history can help track down mistakes

When you have made a command line mistake (not an error within a script or program) and are
not sure what you did wrong, look at the history list to review your recent commands. Sometimes
this list can help you figure out what went wrong and how to fix things.

The Bourne Again Shell assigns a sequential event number to each command line.
You can display this event number as part of the bash prompt by including \! in PS1
(page 303). Examples in this section show numbered prompts when they help to
illustrate the behavior of a command.

Give the following command manually or place it in ~/.bash_profile (to affect
future sessions) to establish a history list of the 100 most recent events:

$ HISTSIZE=100

The following command causes bash to save the 100 most recent events across login
sessions:

$ HISTFILESIZE=100

After you set HISTFILESIZE, you can log out and log in again, and the 100 most
recent events from the previous login session will appear in your history list.

Give the command history to display the events in the history list. The list of events
is ordered with oldest events at the top of the list. The following history list includes
a command to modify the bash prompt so that it displays the history event number.
The last event in the history list is the history command that displayed the list.

32 $ history | tail
23 PS1="\! bash$ "
24 1s -1
25 cat temp
26 rm temp
27 vim memo
28 lpr memo
29 vim memo
30 1pr memo
31 rm memo
32 history | tail

314 CHAPTER9 THE BOURNE AGAIN SHELL

As you run commands and your history list becomes longer, it may run off the top
of the screen when you use the history builtin. Pipe the output of history through less
to browse through it, or give the command history 10 to look at the ten most recent
commands.

REEXECUTING AND EDITING COMMANDS

You can reexecute any event in the history list. This feature can save you time,
effort, and aggravation. Not having to reenter long command lines allows you to
reexecute events more easily, quickly, and accurately than you could if you had to
retype the entire command line. You can recall, modify, and reexecute previously
executed events in three ways: You can use the fc builtin (covered next); the excla-
mation point commands (page 316); or the Readline Library, which uses a one-line
vi- or emacs-like editor to edit and execute events (page 322).

Which method to use?

If you are more familiar with vi or emacs and less familiar with the C or TC Shell, use fc or the
Readline Library. If you are more familiar with the C or TC Shell and less familiar with vi and
emacs, use the exclamation point commands. If it is a toss-up, try the Readline Library; it will
benefit you in other areas of Linux more than learning the exclamation point commands will.

fc: DISPLAYS, EDITS, AND REEXECUTES COMMANDS

The fc (fix command) builtin enables you to display the history list and to edit and
reexecute previous commands. It provides many of the same capabilities as the com-
mand line editors.

VIEWING THE HISTORY LIST

When you call fc with the -1 option, it displays commands from the history list.
Without any arguments, fc -1 lists the 16 most recent commands in a numbered list,
with the oldest appearing first:

$ fc -1

1024 cd

1025 view calendar

1026 vim letter.adams01

1027 aspell -c Tetter.adams@l
1028 vim letter.adams01l

1029 Tpr letter.adams@l

1030 cd ../memos

1031 1s

1032 rm %0405

1033 fc -1

1034 cd

1035 whereis aspell

1036 man aspell

1037 cd /usr/share/doc/+aspell=
1038 pwd

1039 1s

1040 1s man-html

History 315

The fc builtin can take zero, one, or two arguments with the -1 option. The argu-
ments specify the part of the history list to be displayed:

fc =l [first [last]]

The fc builtin lists commands beginning with the most recent event that matches
first. The argument can be an event number, the first few characters of the com-
mand line, or a negative number, which is taken to be the nth previous command. If
you provide last, fc displays commands from the most recent event that matches
first through the most recent event that matches last. The next command displays
the history list from event 1030 through event 1035:

$ fc -1 1030 1035

1030 cd ../memos
1031 1s

1032 rm %0405

1033 fc -1

1034 cd

1035 whereis aspell

The following command lists the most recent event that begins with view through
the most recent command line that begins with whereis:

$ fc -1 view whereis

1025 view calendar

1026 vim Tletter.adams@l
1027 aspell -c letter.adams0l
1028 vim letter.adamsQl
1029 Tpr letter.adams@l
1030 cd ../memos

1031 1s

1032 rm «0405

1033 fc -1

1034 cd

1035 whereis aspell

To list a single command from the history list, use the same identifier for the first
and second arguments. The following command lists event 1027:

$ fc -1 1027 1027
1027 aspell -c letter.adams0l

EDITING AND REEXECUTING PREVIOUS COMMANDS

You can use fc to edit and reexecute previous commands.
fc [-e editor] [first [last]]

When you call fc with the —e option followed by the name of an editor, fc calls the
editor with event(s) in the Work buffer. Without first and last, fc defaults to the
most recent command. The next example invokes the vi(m) editor to edit the most
recent command:

$ fc -e vi

316 CHAPTER9 THE BOURNE AGAIN SHELL

The fc builtin uses the stand-alone vi(m) editor. If you set the FCEDIT variable, you
do not need to use the —e option to specify an editor on the command line. Because
the value of FCEDIT has been changed to /usr/bin/emacs and fc has no arguments,
the following command edits the most recent command with the emacs editor:

$ export FCEDIT=/usr/bin/emacs
$ fc

If you call it with a single argument, fc invokes the editor on the specified command.
The following example starts the editor with event 21 in the Work buffer. When you
exit from the editor, the shell executes the command:

$ fc 21

Again you can identify commands with numbers or by specifying the first few
characters of the command name. The following example calls the editor to work
on events from the most recent event that begins with the letters vim through
event 206:

$ fc vim 206

Clean up the fc buffer

When you execute an fc command, the shell executes whatever you leave in the editor buffer,
possibly with unwanted results. If you decide you do not want to execute a command, delete
everything from the buffer before you exit from the editor.

REEXECUTING COMMANDS WITHOUT CALLING THE EDITOR

You can reexecute previous commands without going into an editor. If you call fc
with the —s option, it skips the editing phase and reexecutes the command. The fol-
lowing example reexecutes event 1029:

$ fc -s 1029
Tpr Tletter.adams0l

The next example reexecutes the previous command:
$ fc -s

When you reexecute a command you can tell fc to substitute one string for another.
The next example substitutes the string john for the string adams in event 1029 and
executes the modified event:

$ fc -s adams=john 1029
Tpr letter.john0ol

USING AN EXCLAMATION POINT (!) To REFERENCE EVENTS

The C Shell history mechanism uses an exclamation point to reference events and is
available under bash. It is frequently more cumbersome to use than fc but nevertheless

HisTory 317

11 reexecutes the
previous event

In event number

Istring event text

has some useful features. For example, the !! command reexecutes the previous event,
and the !$ token represents the last word on the previous command line.

You can reference an event by using its absolute event number, its relative event
number, or the text it contains. All references to events, called event designators,
begin with an exclamation point (!). One or more characters follow the exclama-
tion point to specify an event.

You can put history events anywhere on a command line. To escape an exclamation
point so that it is treated literally instead of as the start of a history event, precede it
with a backslash (\) or enclose it within single quotation marks.

EVENT DESIGNATORS

An event designator specifies a command in the history list. See Table 9-8 on
page 318 for a list of event designators.

You can always reexecute the previous event by giving a !! command. In the follow-
ing example, event 45 reexecutes event 44:

44 $ 1s -1 text

-rw-rw-r-- 1 alex group 45 Apr 30 14:53 text
45 § 1!

1s -1 text

-rw-rw-r-- 1 alex group 45 Apr 30 14:53 text

The !! command works whether or not your prompt displays an event number. As
this example shows, when you use the history mechanism to reexecute an event, the
shell displays the command it is reexecuting.

A number following an exclamation point refers to an event. If that event is in the
history list, the shell executes it. Otherwise, the shell displays an error message. A
negative number following an exclamation point references an event relative to the
current event. For example, the command !-3 refers to the third preceding event.
After you issue a command, the relative event number of a given event changes
(event =3 becomes event —4). Both of the following commands reexecute event 44:

51§ 144

Ts -1 text

-rw-rw-r-- 1 alex group 45 Nov 30 14:53 text
52§ 1-8

Ts -1 text

-rw-rw-r-- 1 alex group 45 Nov 30 14:53 text

When a string of text follows an exclamation point, the shell searches for and
executes the most recent event that began with that string. If you enclose the
string between question marks, the shell executes the most recent event that con-
tained that string. The final question mark is optional if a RETURN would immedi-
ately follow it.

318 CHAPTER9 THE BOURNE AGAIN SHELL

68 $ history 10
59 Ts -T texts
60 tail text5
61 cat textl text5 > letter
62 vim letter
63 cat letter
64 cat memo
65 T1pr memo
66 pine jenny

67 1s -1
68 history
69 § !
Ts -1
70 $!1pr
Tpr memo

71 $!?letter?
cat letter
Event designators
Designator Meaning
! Starts a history event unless followed immediately by SPACE, NEWLINE, =, or (.

" The previous command.

In Command number nin the history list.

I-n The nth preceding command.

Istring The most recent command line that started with string.

12string[?] The most recent command that contained string. The last ? is optional.

4 The current command (as you have it typed so far).

Yevent} The eventis an event designator. The braces isolate event from the surrounding
Eeyx’; ;or example, H-313 is the third most recently executed command followed

optional WoRD DESIGNATORS

A word designator specifies a word or series of words from an event. Table 9-9 on
page 320 lists word designators.

The words are numbered starting with O (the first word on the line—usually the
command), continuing with 1 (the first word following the command), and going
through # (the last word on the line).

To specify a particular word from a previous event, follow the event designator
(such as !14) with a colon and the number of the word in the previous event. For

HisTory 319

example, 114:3 specifies the third word following the command from event 14. You
can specify the first word following the command (word number 1) by using a caret
(M) and the last word by using a dollar sign ($). You can specify a range of words by
separating two word designators with a hyphen.

72 $ echo apple grape orange pear
apple grape orange pear

73 $ echo 172:2

echo grape

grape

74 $ echo '72:A

echo apple

apple

75 $ 172:0 172:$
echo pear

pear

76 $ echo '72:2-4

echo grape orange pear

grape orange pear

77 $ 172:0-$%

echo apple grape orange pear
apple grape orange pear

As the next example shows, !$ refers to the last word of the previous event. You can
use this shorthand to edit, for example, a file you just displayed with cat:

$ cat report.718

$ vim !'$
vim report.718

If an event contains a single command, the word numbers correspond to the argu-
ment numbers. If an event contains more than one command, this correspondence
does not hold true for commands after the first. In the following example event 78
contains two commands separated by a semicolon so that the shell executes them
sequentially; the semicolon is word number 5.

78 $ 172 ; echo helen jenny barbara
echo apple grape orange pear ; echo helen jenny barbara
apple grape orange pear

helen jenny barbara

79 $ echo '78:7

echo helen

helen

80 $ echo '78:4-7

echo pear ; echo helen

pear

helen

320 CHAPTER9

THE BOURNE AGAIN SHELL

Substitute modifier

Word designators

Designator Meaning
n The nth word. Word 0 is normally the command name.
W The first word (after the command name).

The last word.

m-n All words from word number mthrough word number n; m defaults to 0 if you
omit it (0—n).
n: All words from word number n through the last word.

All words except the command name. The same as 1:.

% The word matched by the most recent ?string? search.

MODIFIERS

On occasion you may want to change an aspect of an event you are reexecuting.
Perhaps you entered a complex command line with a typo or incorrect pathname or
you want to specify a different argument. You can modify an event or a word of an
event by putting one or more modifiers after the word designator, or after the event
designator if there is no word designator. Each modifier must be preceded by a
colon (:).

The substitute modifier is more complex than the other modifiers. The following
example shows the substitute modifier correcting a typo in the previous event:

$ car /home/jenny/memo.0507 /home/alex/letter.0507
bash: car: command not found

$ 1l:s/car/cat

cat /home/jenny/memo.0507 /home/alex/letter.0507

The substitute modifier has the following syntax:
[g]slold/new/

where old is the original string (not a regular expression), and new is the string that
replaces old. The substitute modifier substitutes the first occurrence of old with
new. Placing a g before the s (as in gs/old/new/) causes a global substitution, replac-
ing all occurrences of old. The / is the delimiter in the examples but you can use any
character that is not in either old or new. The final delimiter is optional if a RETURN
would immediately follow it. As with the vim Substitute command, the history
mechanism replaces an ampersand (&) in new with old. The shell replaces a null
old string (s//mew/) with the previous old string or string within a command that
you searched for with 2string?.

HisTory 321

Quick substitution

Other modifiers

An abbreviated form of the substitute modifier is quick substitution. Use it to reexe-
cute the most recent event while changing some of the event text. The quick substi-
tution character is the caret (). For example, the command

$ AoldAnewA
produces the same results as
$§ !'1:s/old/new/
Thus substituting cat for car in the previous event could have been entered as

$ AcarAcat
cat /home/jenny/memo.0507 /home/alex/letter.0507

You can omit the final caret if it would be followed immediately by a RETURN. As with
other command line substitutions, the shell displays the command line as it appears
after the substitution.

Modifiers (other than the substitute modifier) perform simple edits on the part of
the event that has been selected by the event designator and the optional word des-
ignators. You can use multiple modifiers, each preceded by a colon (:).

The following series of commands uses Is to list the name of a file, repeats the com-
mand without executing it (p modifier), and repeats the last command, removing
the last part of the pathname (h modifier) again without executing it:

$ 1s /etc/sysconfig/harddisks
/etc/sysconfig/harddisks

$ 1:p

1s /etc/sysconfig/harddisks

$ 11:h:p

1s /etc/sysconfig

$

Table 9-10 lists event modifiers other than the substitute modifier.

Modifiers
Modifier Function
e (extension) Removes all but the filename extension
h (head) Removes the last part of a pathname
p (print-not) Displays the command, but does not execute it
q (quote) Quotes the substitution to prevent further substitutions on it
r (root) Removes the filename extension
t (tail) Removes all elements of a pathname except the last

X Like q but quotes each word in the substitution individually

322 CHAPTER9 THE BOURNE AGAIN SHELL

THE READLINE LIBRARY

vi mode

emacs mode

Command line editing under the Bourne Again Shell is implemented through the
Readline Library, which is available to any application written in C. Any applica-
tion that uses the Readline Library supports line editing that is consistent with that
provided by bash. Programs that use the Readline Library, including bash, read
~/.inputrc (page 325) for key binding information and configuration settings. The
——noediting command line option turns off command line editing in bash.

You can choose one of two editing modes when using the Readline Library in bash:
emacs or vi(m). Both modes provide many of the commands available in the stand-
alone versions of the vi(m) and emacs editors. You can also use the ARROW keys to
move around. Up and down movements move you backward and forward through
the history list. In addition, Readline provides several types of interactive word
completion (page 324). The default mode is emacs; you can switch to vi mode with
the following command:

$ set -0 vi
The next command switches back to emacs mode:

$ set -o emacs

vi EDITING MODE

Before you start make sure you are in vi mode.

When you enter bash commands while in vi editing mode, you are in Input mode
(page 174). As you enter a command, if you discover an error before you press
RETURN, you can press ESCAPE to switch to vi Command mode. This setup is different
from the stand-alone vi(m) editor’s initial mode. While in Command mode you can
use many vi(m) commands to edit the command line. It is as though you were using
vi(m) to edit a copy of the history file with a screen that has room for only one com-
mand. When you use the k command or the UP ARROW to move up a line, you access
the previous command. If you then use the j command or the DOWN ARROW to move
down a line, you will return to the original command. To use the k and j keys to
move between commands you must be in Command mode; you can use the ARROW
keys in both Command and Input modes.

The stand-alone editor starts in Command mode

The stand-alone vim editor starts in Command mode, whereas the command line vi(m) editor
starts in Input mode. If commands display characters and do not work properly, you are in Input
mode. Press ESCAPE and enter the command again.

In addition to cursor-positioning commands, you can use the search-backward (?)
command followed by a search string to look back through your history list for the
most recent command containing that string. If you have moved back in your history
list, use a forward slash (/) to search forward toward your most recent command.
Unlike the search strings in the stand-alone vi(m) editor, these search strings cannot

HisTory 323

contain regular expressions. You can, however, start the search string with a caret ()
to force the shell to locate commands that start with the search string. As in vi(m),
pressing n after a successful search looks for the next occurrence of the same string.

You can also access events in the history list by using event numbers. While you are
in Command mode (press ESCAPE), enter the event number followed by a G to go to
the command with that event number.

When you use /, ?, or G to move to a command line, you are in Command mode, not
Input mode. Now you can edit the command as you like or press RETURN to execute it.

Once the command you want to edit is displayed, you can modify the command line
using vi(m) Command mode editing commands such as x (delete character), r
(replace character), ~ (change case), and . (repeat last change). To change to Input
mode, use an Insert (i, I), Append (a, A), Replace (R), or Change (¢, C) command.
You do not have to return to Command mode to run a command; simply press
RETURN, even if the cursor is in the middle of the command line.

emacs EDITING MODE

Unlike the vi(m) editor, emacs is modeless. You need not switch between Command
mode and Input mode because most emacs commands are control characters,
allowing emacs to distinguish between input and commands. Like vi(m), the emacs
command line editor provides commands for moving the cursor on the command
line and through the command history list and for modifying part or all of a com-
mand. The emacs command line editor commands differ in a few cases from the
commands in the stand-alone emacs editor.

In emacs you perform cursor movement by using both CONTROL and ESCAPE commands.
To move the cursor one character backward on the command line, press CONTROL-B.
Press CONTROLF to move one character forward. As in vi, you may precede these move-
ments with counts. To use a count you must first press ESCAPE; otherwise, the num-
bers you type will appear on the command line.

Like vi(m), emacs provides word and line movement commands. To move backward
or forward one word on the command line, press ESCAPEb or ESCAPEf. To move several
words by using a count, press ESCAPE followed by the number and the appropriate
escape sequence. To get to the beginning of the line, press CONTROL-A; to the end of the
line, press CONTROL-E; and to the next instance of the character ¢, press CONTROL-X CONTROL-F
followed by c.

You can add text to the command line by moving the cursor to the correct place and
typing the desired text. To delete text, move the cursor just to the right of the char-
acters that you want to delete and press the erase key (page 137) once for each char-
acter you want to delete.

CONTROL-D can terminate your screen session

If you want to delete the character directly under the cursor, press CONTROL-D. If you enter CONTROL-D
at the beginning of the line, it may terminate your shell session.

324 CHAPTER9 THE BOURNE AGAIN SHELL

If you want to delete the entire command line, type the line kill character
(page 138). You can type this character while the cursor is anywhere in the com-
mand line. If you want to delete from the cursor to the end of the line, use CONTROLK.

READLINE COMPLETION COMMANDS

You can use the TAB key to complete words you are entering on the command line.
This facility, called completion, works in both vi and emacs editing modes. Several
types of completion are possible, and which one you use depends on which part of a
command line you are typing when you press TAB.

CoMmMAND COMPLETION

If you are typing the name of a command (the first word on the command line),
pressing TAB results in command completion. That is, bash looks for a command
whose name starts with the part of the word you have typed. If no command starts
with what you have entered, bash beeps. If there is one such command, bash com-
pletes the command name for you. If there is more than one choice, bash does noth-
ing in vi mode and beeps in emacs mode. Pressing TAB a second time causes bash to
display a list of commands whose names start with the prefix you typed and allows
you to finish typing the command name.

In the following example, the user types bz and presses TAB. The shell beeps (the user
is in emacs mode) to indicate that several commands start with the letters bz. The
user enters another TAB to cause the shell to display a list of commands that start
with bz followed by the command line as the user had entered it so far:

$ bz —>TAB (beep) —>TAB

bzcat bzdiff bzip2 bzless
bzcmp bzgrep bzip2recover bzmore
$ bzHl

Next the user types ¢ and presses TAB twice. The shell displays the two commands
that start with bzc. The user types a followed by TAB and the shell then completes the
command because only one command starts with bzca.

$ bzc —>TAB (beep) —>TAB
bzcat bzcmp

$ bzca —>m8 — t

PATHNAME COMPLETION

Pathname completion, which also uses TABs, allows you to type a portion of a path-
name and have bash supply the rest. If the portion of the pathname that you have
typed is sufficient to determine a unique pathname, bash displays that pathname. If
more than one pathname would match it, bash completes the pathname up to the
point where there are choices so that you can type more.

When you are entering a pathname, including a simple filename, and press 78, the
shell beeps (if the shell is in emacs mode—in vi mode there is no beep). It then
extends the command line as far as it can.

HisTory 325

$ cat films/dar —>TAB (beep) cat films/dark_H

In the films directory every file that starts with dar has k_ as the next characters, so
bash cannot extend the line further without making a choice among files. You are
left with the cursor just past the _ character. At this point you can continue typing
the pathname or press TAB twice. In the latter case bash beeps, displays your choices,
redisplays the command line, and again leaves the cursor just after the _ character.

$ cat films/dark_ —>TAB (beep) —>TAB
dark_passage dark_victory
$ cat films/dark_H

When you add enough information to distinguish between the two possible files and
press TAB, bash displays the unique pathname. If you enter p followed by 148 after the
_ character, the shell completes the command line:

$ cat films/dark_p —>TAB —>assage

Because there is no further ambiguity, the shell appends a SPACE so you can finish typ-
ing the command line or just press RETURN to execute the command. If the complete
pathname is that of a directory, bash appends a slash (/) in place of a SPACE.

VARIABLE COMPLETION

When typing a variable name, pressing TAB results in variable completion, where
bash tries to complete the name of the variable. In case of an ambiguity, pressing TAB
twice displays a list of choices:

$ echo $HO —>TAB —>TAB
$HOME $HOSTNAME $HOSTTYPE
$ echo $HOM —TAB —E

Pressing RETURN executes the command

Pressing RETURN causes the shell to execute the command regardless of where the cursor is on
the command line.

.inputrc: CONFIGURING READLINE

The Bourne Again Shell and other programs that use the Readline Library read the
file specified by the INPUTRC environment variable to obtain initialization infor-
mation. If INPUTRC is not set, these programs read the ~/.inputrc file. They ignore
lines of .inputrc that are blank or that start with a pound sign (#).

VARIABLES

You can set variables in .inputrc to control the behavior of the Readline Library
using the following syntax:

set variable value

Table 9-11 lists some variables and values you can use. See Readline Variables in the
bash man or info page for a complete list.

326 CHAPTER9 THE BOURNE AGAIN SHELL

bind

Readline variables
Variable Effect

editing-mode Set to vi to start Readline in vi mode. Set to emacs to start
Readline in emacs mode (the default). Similar to the set —o vi
and set —o emacs shell commands (page 322).

horizontal-scroll-mode Set to on to cause long lines to extend off the right edge of the
display area. Moving the cursor to the right when it is at the
right edge of the display area shifts the line to the left so you can
see more of the line. You can shift the line back by moving the
cursor back past the left edge. The default value is off, which
causes long lines to wrap onto multiple lines of the display.

mark-directories Set to off to cause Readline not to place a slash (/) at the end of
directory names it completes. Normally it is on.

mark-modified-lines Set to on to cause Readline to precede modified history lines
with an asterisk. The default value is off.

KEY BINDINGS

You can specify bindings that map keystroke sequences to Readline commands,
allowing you to change or extend the default bindings. As in emacs, the Readline
Library includes many commands that are not bound to a keystroke sequence. To
use an unbound command, you must map it using one of the following forms:

keyname: command_name
" keystroke_sequence" : command_name

In the first form, you spell out the name for a single key. For example, CONTROL-U would
be written as control-u. This form is useful for binding commands to single keys.

In the second form, you specify a string that describes a sequence of keys that will
be bound to the command. You can use the emacs-style backslash escape sequences
to represent the special keys CONTROL (\C), META (\M), and ESCAPE (\e). Specify a back-
slash by escaping it with another backslash: \\. Similarly, a double or single quota-
tion mark can be escaped with a backslash: \" or \'.

The kill-whole-line command, available in emacs mode only, deletes the current
line. Put the following command in .inputrc to bind the kill-whole-line command
(which is unbound by default) to the keystroke sequence CONTROLR.

control-r: kill-whole-1ine

Give the command bind -P to display a list of all Readline commands. If a com-
mand is bound to a key sequence, that sequence is shown. Commands you can use
in vi mode start with vi. For example, vi-next-word and vi-prev-word move the cur-
sor to the beginning of the next and previous words, respectively. Commands that
do not begin with vi are generally available in emacs mode.

Use bind —q to determine which key sequence is bound to a command:

HisTory 327

$ bind -q kill-whole-Tine
kill-whole-Tine can be invoked via "\C-r".

You can also bind text by enclosing it within double quotation marks (emacs
mode only):

"QQ": "The Linux Operating System"

This command causes bash to insert the string The Linux Operating System when
you type QQ.

CONDITIONAL CONSTRUCTS

You can conditionally select parts of the .inputrc file using the $if directive. The
syntax of the conditional construct is

$if test[=value]
commands
[Selse

commands|

Sendif

where test is mode, term, or bash. If test equals value or if test is true, this structure
executes the first set of commands. If test does not equal value or if test is false, it
executes the second set of commands if they are present or exits from the structure
if they are not present.

The power of the $if directive lies in the three types of tests it can perform.
1. You can test to see which mode is currently set.
$if mode=vi

The preceding test is true if the current Readline mode is vi and false other-
wise. You can test for vi or emacs.

2. You can test the type of terminal.
$if term=xterm

The preceding test is true if the TERM variable is set to xterm. You can
test for any value of TERM.

3. You can test the application name.
$if bash

The preceding test is #rue when you are running bash and not another pro-
gram that uses the Readline Library. You can test for any application
name.

These tests can customize the Readline Library based on the current mode, the type
of terminal, and the application you are using. They give you a great deal of power
and flexibility when using the Readline Library with bash and other programs.

328 CHAPTER9 THE BOURNE AGAIN SHELL

ALIASES

The following commands in .inputrc cause CONTROL-Y to move the cursor to the begin-
ning of the next word regardless of whether bash is in vi or emacs mode:

$ cat ~/.inputrc
set editing-mode vi
$if mode=vi
"\C-y": vi-next-word
$else
"\C-y": forward-word
$endif

Because bash reads the preceding conditional construct when it is started, you must
set the editing mode in .inputrc. Changing modes interactively using set will not
change the binding of CONTROL-.

For more information on the Readline Library, open the bash man page and give the
command /AREADLINE, which searches for the word READLINE at the beginning
of a line.

If Readline commands do not work, log out and log in again

The Bourne Again Shell reads ~/.inputrc when you log in. After you make changes to this file, you
must log out and log in again before the changes take effect.

An alias is a (usually short) name that the shell translates into another (usually
longer) name or (complex) command. Aliases allow you to define new commands
by substituting a string for the first token of a simple command. They are typically
placed in the ~/.bashrc startup files so that they are available to interactive sub-

shells.

The syntax of the alias builtin is
alias [name[=value]]

No SPACEs are permitted around the equal sign. If value contains SPACEs or TABs, you
must enclose value between quotation marks. An alias does not accept an argument
from the command line in value. Use a function (page 331) when you need to use
an argument.

An alias does not replace itself, which avoids the possibility of infinite recursion in
handling an alias such as the following:

$ alias 1s="1s -F'

You can nest aliases. Aliases are disabled for noninteractive shells (that is, shell
scripts). To see a list of the current aliases, give the command alias. To view the alias
for a particular name, use alias followed by the name and nothing else. You can use
the unalias builtin to remove an alias.

ALIASES 329

When you give an alias builtin command without any arguments, the shell displays
a list of all defined aliases:

$ alias

alias 11="1s -1'
alias 1="1s -1tr’'
alias 1s='1ls -F'
alias zap="rm -i'

Ubuntu Linux defines some aliases. Give an alias command to see which aliases
are in effect. You can delete the aliases you do not want from the appropriate
startup file.

SINGLE VERSUS DOUBLE QUOTATION MARKS IN ALIASES

The choice of single or double quotation marks is significant in the alias syntax
when the alias includes variables. If you enclose value within double quotation
marks, any variables that appear in value are expanded when the alias is created. If
you enclose value within single quotation marks, variables are not expanded until
the alias is used. The following example illustrates the difference.

The PWD keyword variable holds the pathname of the working directory. Alex cre-
ates two aliases while he is working in his home directory. Because he uses double
quotation marks when he creates the dirA alias, the shell substitutes the value of the
working directory when he creates this alias. The alias dirA command displays the
dirA alias and shows that the substitution has already taken place:

$ echo $PWD

/home/aTlex

$ alias dirA="echo Working directory is $PWD"

$ alias dirA

alias dirA='echo Working directory is /home/alex'

When Alex creates the dirB alias, he uses single quotation marks, which prevent the
shell from expanding the $PWD variable. The alias dirB command shows that the
dirB alias still holds the unexpanded $PWD variable:

$ alias dirB="echo Working directory is $PWD'
$ alias dirB
alias dirB='"echo Working directory is $PWD'

After creating the dirA and dirB aliases, Alex uses cd to make cars his working
directory and gives each of the aliases as commands. The alias that he created with
double quotation marks displays the name of the directory that he created the alias
in as the working directory (which is wrong) and the dirB alias displays the proper
name of the working directory:

$ cd cars

$ dirA

Working directory is /home/alex

$ dirB

Working directory is /home/alex/cars

330 CHAPTER9

THE BOURNE AGAIN SHELL

EXAMPLES

How to prevent the shell from invoking an alias

The shell checks only simple, unquoted commands to see if they are aliases. Commands given as
relative or absolute pathnames and quoted commands are not checked. When you want to give a
command that has an alias but do not want to use the alias, precede the command with a back-
slash, specify the command’s absolute pathname, or give the command as ./command.

OF ALIASES

The following alias allows you to type r to repeat the previous command or r abc to
repeat the last command line that began with abc:

$ alias r="fc -s

If you use the command Is —ltr frequently, you can create an alias that substitutes Is
—ltr when you give the command 1:

$ alias 1="1s -1tr’

$1

total 41

-rw-r--r-- 1 alex group 30015 Mar 1 2007 flute.ps

-rW-r----- 1 alex group 3089 Feb 11 2008 XTerm.ad
-rw-r--r-- 1 alex group 641 Apr 1 2008 fixtax.icn
-rw-r--r-- 1 alex group 484 Apr 9 2008 maptax.icn
drwxrwxr-x 2 alex group 1024 Aug 9 17:41 Tiger
drwxrwxr-x 2 alex group 1024 Sep 10 11:32 testdir
-rwxr-xr-x 1 alex group 485 Oct 21 08:03 floor
drwxrwxr-x 2 alex group 1024 Oct 27 20:19 Test_Emacs

Another common use of aliases is to protect yourself from mistakes. The following exam-
ple substitutes the interactive version of the rm utility when you give the command zap:

$ alias zap="rm -i'

$ zap f=

rm: remove 'fixtax.icn'? n

rm: remove 'flute.ps'? n

rm: remove 'floor'? n

The —i option causes rm to ask you to verify each file that would be deleted, to help
you avoid accidentally deleting the wrong file. You can also alias rm with the rm —i
command: alias rm="rm —i'.

The aliases in the next example cause the shell to substitute Is -1 each time you give
an Il command and Is -F when you use Is:

$ alias 1s="1s -F'

$ alias 11="1s -1'

$ 1

total 41

drwxrwxr-x 2 alex group 1024 Oct 27 20:19 Test_Emacs/

drwxrwxr-x 2 alex group 1024 Aug 9 17:41 Tiger/
-rw-r----- 1 alex group 3089 Feb 11 2008 XTerm.ad
-rw-r--r-- 1 alex group 641 Apr 1 2008 fixtax.icn
-rw-r--r-- 1 alex group 30015 Mar 1 2007 flute.ps
-rwxr-xr-x 1 alex group 485 Oct 21 08:03 floor=*
-rw-r--r-- 1 alex group 484 Apr 9 2008 maptax.icn
drwxrwxr-x 2 alex group 1024 Sep 10 11:32 testdir/

FuncTions 331

The —F option causes Is to print a slash (/) at the end of directory names and an
asterisk () at the end of the names of executable files. In this example, the string
that replaces the alias 11 (Is -1) itself contains an alias (Is). When it replaces an alias
with its value, the shell looks at the first word of the replacement string to see
whether it is an alias. In the preceding example, the replacement string contains the
alias Is, so a second substitution occurs to produce the final command Is —F -1. (To
avoid a recursive plunge, the ls in the replacement text, although an alias, is not
expanded a second time.)

When given a list of aliases without the =value or value field, the alias builtin
responds by displaying the value of each defined alias. The alias builtin reports an
error if an alias has not been defined:

$ alias 11 1 1s zap wx
alias 11="1s -1'

alias 1="1s -1tr’'

alias 1s="'1ls -F'

alias zap="rm -i'

bash: alias: wx: not found

You can avoid alias substitution by preceding the aliased command with a backslash (\):

$ \1s
Test_Emacs XTerm.ad flute.ps maptax.icn
Tiger fixtax.icn floor testdir

Because the replacement of an alias name with the alias value does not change the rest of
the command line, any arguments are still received by the command that gets executed:

$ 11 f=

-rw-r--r-- 1 alex group 641 Apr 1 2008 fixtax.icn
-rw-r--r-- 1 alex group 30015 Mar 1 2007 flute.ps
-rwxr-xr-x 1 alex group 485 Oct 21 08:03 floor=

You can remove an alias with the unalias builtin. When the zap alias is removed, it is no
longer displayed with the alias builtin and its subsequent use results in an error message:

$ unalias zap

$ alias

alias 11="1s -1'

alias 1="1s -1tr'

alias 1s='1ls -F'

$ zap maptax.icn

bash: zap: command not found

FUNCTIONS

A shell function is similar to a shell script in that it stores a series of commands for
execution at a later time. However, because the shell stores a function in the com-
puter’s main memory (RAM) instead of in a file on the disk, the shell can access it
more quickly than the shell can access a script. The shell also preprocesses (parses) a
function so that it starts up more quickly than a script. Finally the shell executes a

332 CHAPTER9 THE BOURNE AGAIN SHELL

shell function in the same shell that called it. If you define too many functions, the
overhead of starting a subshell (as when you run a script) can become unacceptable.

You can declare a shell function in the ~/.bash_profile startup file, in the script that
uses it, or directly from the command line. You can remove functions with the unset
builtin. The shell does not keep functions once you log out.

Removing variables and functions

If you have a shell variable and a function with the same name, using unset removes the shell
variable. If you then use unset again with the same name, it removes the function.

The syntax that declares a shell function is

[function] function-name ()

{
/

where the word function is optional, function-name is the name you use to call the
function, and commands comprise the list of commands the function executes when
you call it. The commands can be anything you would include in a shell script,
including calls to other functions.

commands

The first brace ({) can appear on the same line as the function name. Aliases and
variables are expanded when a function is read, not when it is executed. You can
use the break statement (page 418) within a function to terminate its execution.

Shell functions are useful as a shorthand as well as to define special commands. The
following function starts a process named process in the background, with the out-
put normally displayed by process being saved in .process.out:

start_process() {

process > .process.out 2>&1 &

}

The next example shows how to create a simple function that displays the date, a
header, and a list of the people who are using the system. This function runs the
same commands as the whoson script described on page 283. In this example the
function is being entered from the keyboard. The greater-than (>) signs are second-
ary shell prompts (PS2); do not enter them.

$ function whoson ()

> {

> date

> echo "Users Currently Logged On"
> who

>}

$ whoson

Sun Aug 5 15:44:58 PDT 2007

Users Currently Logged On

hls console Aug 4 08:59 (:0)

alex pts/4 Aug 4 09:33 (0.0)

jenny pts/7 Aug 4 09:23 (bravo.example.com)

FuncTioNs 333

Functions in If you want to have the whoson function always be available without having to
startup files enter it each time you log in, put its definition in ~/.bash_profile. Then run

optional

.bash_profile, using the . (dot) command to put the changes into effect immediately:

$ cat ~/.bash_profile
export TERM=vt100
stty ki1l '"Au'

whoson ()

{
date
echo "Users Currently Logged On"
who

}
$. ~/.bash_profile

You can specify arguments when you call a function. Within the function these
arguments are available as positional parameters (page 438). The following exam-
ple shows the argl function entered from the keyboard.

$ argl () {
> echo "$1"
>}

$ argl first_arg
first_arg

See the function switch () on page 279 for another example of a function. “Func-
tions” on page 435 discusses the use of local and global variables within a function.

The following function allows you to export variables using tcsh syntax. The env
builtin lists all environment variables and their values and verifies that setenv
worked correctly:

$ cat .bash_profile

setenv - keep tcsh users happy
function setenv()

{
if [$# -eq 2]
then
eval $1=%$2
export $1
else
echo "Usage: setenv NAME VALUE" 1>&2
fi
}

$. ~/.bash_profile

$ setenv TCL_LIBRARY /usr/local/11ib/tcl
$ env | grep TCL_LIBRARY
TCL_LIBRARY=/usr/local/1ib/tcl

eval The $# special parameter (page 439) takes on the value of the number of command

line arguments. This function uses the eval builtin to force bash to scan the com-
mand $1=$2 #wice. Because $1=$2 begins with a dollar sign ($), the shell treats the

334 CHAPTER9 THE BOURNE AGAIN SHELL

entire string as a single token—a command. With variable substitution performed,
the command name becomes TCL_LIBRARY=/usr/local/lib/tcl, which results in an
error. Using eval, a second scanning splits the string into the three desired tokens,
and the correct assignment occurs.

CONTROLLING bash FEATURES AND OPTIONS

This section explains how to control bash features and options using command line
options and the set and shopt builtins.

ComMAND LINE OPTIONS

Two kinds of command line options are available: short and long. Short options
consist of a hyphen followed by a letter; long options have two hyphens followed by
multiple characters. Long options must appear before short options on a command
line that calls bash. Table 9-12 lists some commonly used command line options.

Option
Help
No edit

No profile

No rc

POSIX
Version
Login
shopt

End of options

SHELL FEATURES

Command line options

Explanation
Displays a usage message.

Prevents users from using the Readline Library
(page 322) to edit command lines in an interactive
shell.

Prevents reading these startup files (page 277):
[etc/profile, ~/.bash_profile, ~/.bash_login, and
~/.profile.

Prevents reading the ~/.bashrc startup file
(page 277). This option is on by default if the shell is
called as sh.

Runs bash in POSIX mode.
Displays bash version information and exits.
Causes bash to run as though it were a login shell.

Runs a shell with the aptshopt option (page 335). A
-0 (uppercase “0”) sets the option; +0 unsets it.

On the command line, signals the end of options.
Subsequent tokens are treated as arguments even if
they begin with a hyphen (=).

Syntax
—-help

—-noediting

——noprofile

——Nnorc

——posix
—-version
-I (lowercase “I”)

(]0 [opt]

You can control the behavior of the Bourne Again Shell by turning features on and
off. Different features use different methods to turn features on and off. The set

CONTROLLING bash FEATURES AND OPTIONS 335

builtin controls one group of features, while the shopt builtin controls another group.
You can also control many features from the command line you use to call bash.

Features, options, variables?

To avoid confusing terminology, this book refers to the various shell behaviors that you can control
as features. The bash info page refers to them as “options” and “values of variables controlling
optional shell behavior.”

set +0: TURNS SHELL FEATURES ON AND OFF

The set builtin, when used with the —o or +o option, enables, disables, and lists cer-
tain bash features. For example, the following command turns on the noclobber fea-
ture (page 231):

$ set -o noclobber
You can turn this feature off (the default) by giving the command
$ set +o noclobber

The command set —o without an option lists each of the features controlled by set fol-
lowed by its state (on or off). The command set +o without an option lists the same
features in a form that you can use as input to the shell. Table 9-13 lists bash features.

shopt: TURNS SHELL FEATURES ON AND OFF

The shopt (shell option) builtin enables, disables, and lists certain bash features that
control the behavior of the shell. For example, the following command causes bash
to include filenames that begin with a period (.) when it expands ambiguous file ref-
erences (the —s stands for set):

$ shopt -s dotglob
You can turn this feature off (the default) by giving the command (the —u stands for unset)
$ shopt -u dotglob

The shell displays how a feature is set if you give the name of the feature as the only
argument to shopt:

$ shopt dotglob
dotglob off

The command shopt without any options or arguments lists the features controlled
by shopt and their state. The command shopt —s without an argument lists the fea-
tures controlled by shopt that are set or on. The command shopt —u lists the features
that are unset or off. Table 9-13 lists bash features.

Setting set o features using shopt

You can use shopt to set/unset features that are otherwise controlled by set +o0. Use the regular
shopt syntax with —=s or —u and include the —o option. For example, the following command turns
on the noclobber feature:

$ shopt -o -s noclobber

336 CHAPTER9 THE BOURNE AGAIN SHELL

Feature
allexport

braceexpand

cdspell

cmdhist

dotglob

emacs

errexit

execfail

expand_aliases

hashall

histappend

histexpand

bash features

Description

Automatically exports all variables and
functions that you create or modify after
giving this command.

Causes bash to perform brace expansion
(the default; page 340).

Corrects minor spelling errors in directory
names used as arguments to cd.

Saves all lines of a multiline command in
the same history entry, adding semicolons
as needed.

Causes shell special characters (wildcards;
page 239) in an ambiguous file reference
to match a leading period in a filename. By
default special characters do not to match
a leading period. You must always specify
the filenames . and . . explicitly because no
pattern ever matches them.

Specifies emacs editing mode for com-
mand line editing (the default; page 323).

Causes bash to exit when a simple com-
mand (not a control structure) fails.

Causes a shell script to continue running
when it cannot find the file that is given as
an argument to exec. By default a script
terminates when exec cannot find the file
that is given as its argument.

Causes aliases (page 328) to be expanded
(by defaultitis on for interactive shells and
off for noninteractive shells).

Causes bash to remember where com-
mands it has found using PATH (page 302)
are located (default).

Causes bash to append the history list to
the file named by HISTFILE (page 312)
when the shell exits. By default bash over-
writes this file.

Causes the history mechanism (which
uses exclamation points; page 316) to
work (default). Turn this feature off to turn
off history expansion.

Syntax Alternate syntax
set —o allexport set-a
set —o braceexpand set-B
shopt —s cdspell

shopt —s cmdhist

shopt —s dotglob

set —0 emacs

set —o errexit set—e
shopt —s execfail

shopt —s expand_alias

set —o hashall set-h
shopt s histappend

set —o histexpand set-H

CONTROLLING bash FEATURES AND OPTIONS 337

bash features (continued)

history Enable command history (on by default; set -0 history
page 312).
ignoreeof Specifies that bash must receive ten EOF set —o ignoreeof
characters before it exits. Useful on noisy
dial-up lines.
monitor Enables job control (on by default, set —0 monitor set-m
page 290).
nocaseglob Causes ambiguous file references shopt -s nocaseglob

(page 239) to match filenames without
regard to case (off by default).

noclobber Helps prevent overwriting files (off by set -0 noclohber set-C
default; page 231).

noglob Disables pathname expansion (off by set -0 noglob set —f
default; page 239).

notify With job control (page 290) enabled, set —o notify set-h
reports the termination status of back-
ground jobs immediately. The default
behavior is to display the status just before
the next prompt.

nounset Displays an error and exits from a shell set —0 nounset set-u
script when you use an unset variable in an
interactive shell. The default is to display a
null value for an unset variable.

nullglob Causes bash to expand ambiguous file shopt —s nullglob
references (page 239) that do not match a
filename to a null string. By default bash
passes these file references without
expanding them.

posix Runs bash in POSIX mode. set -0 posix

verbose Displays command lines as bash reads set —o verbose set-v
them.

Vi Specifies vi editing mode for command set—o vi

line editing (page 322).

Xpg_echo Causes the echo builtin to expand back- shopt -s xpg_echo
slash escape sequences without the need
for the —e option (page 422).

xtrace Turns on shell debugging (page 408). set —o xtrace set —x

338 CHAPTER9 THE BOURNE AGAIN SHELL

PROCESSING THE COMMAND LINE

Whether you are working interactively or running a shell script, bash needs to read
a command line before it can start processing it—bash always reads at least one line
before processing a command. Some bash builtins, such as if and case, as well as
functions and quoted strings, span multiple lines. When bash recognizes a command
that covers more than one line, it reads the entire command before processing it. In
interactive sessions bash prompts you with the secondary prompt (PS2, > by default;
page 305) as you type each line of a multiline command until it recognizes the end
of the command:

$ echo 'hi

> end'

hi

end

$ function hello () {

> echo hello there

>}

$
After reading a command line, bash applies history expansion and alias substitution
to the line.

HiISTORY EXPANSION

“Reexecuting and Editing Commands” on page 314 discusses the commands you
can give to modify and reexecute command lines from the history list. History
expansion is the process that bash uses to turn a history command into an execut-
able command line. For example, when you give the command !!, history expansion
changes that command line so it is the same as the previous one. History expansion
is turned on by default for interactive shells; set +o histexpand turns it off. History
expansion does not apply to noninteractive shells (shell scripts).

ALIAS SUBSTITUTION

Aliases (page 328) substitute a string for the first word of a simple command. By
default aliases are turned on for interactive shells and off for noninteractive shells.
Give the command shopt —u expand_aliases to turn aliases off.

PARSING AND SCANNING THE COMMAND LINE

After processing history commands and aliases, bash does not execute the command
immediately. One of the first things the shell does is to parse (isolate strings of charac-
ters in) the command line into tokens or words. The shell then scans each token for
special characters and patterns that instruct the shell to take certain actions. These
actions can involve substituting one word or words for another. When the shell parses
the following command line, it breaks it into three tokens (cp, ~/letter, and .):

$ cp ~/letter .

PROCESSING THE COMMAND LINE 339

After separating tokens and before executing the command, the shell scans the
tokens and performs command line expansion.

COMMAND LINE EXPANSION

Quote removal

In both interactive and noninteractive use, the shell transforms the command line
using command line expansion before passing the command line to the program
being called. You can use a shell without knowing much about command line
expansion, but you can use what a shell has to offer to a better advantage with an
understanding of this topic. This section covers Bourne Again Shell command line
expansion.

The Bourne Again Shell scans each token for the various types of expansion and
substitution in the following order. Most of these processes expand a word into a
single word. Only brace expansion, word splitting, and pathname expansion can
change the number of words in a command (except for the expansion of the vari-
able "$@"—page 440).

1. Brace expansion (page 340)

. Tilde expansion (page 341)

. Parameter and variable expansion (page 342)
. Arithmetic expansion (page 342)

. Command substitution (page 344)

. Word splitting (page 345)

N N v AW N

. Pathname expansion (page 345)
8. Process substitution (page 347)

After bash finishes with the preceding list, it removes from the command line single
quotation marks, double quotation marks, and backslashes that are not a result of
an expansion. This process is called guote remouval.

ORDER OF EXPANSION

The order in which bash carries out these steps affects the interpretation of com-
mands. For example, if you set a variable to a value that looks like the instruction
for output redirection and then enter a command that uses the variable’s value to
perform redirection, you might expect bash to redirect the output.

$ SENDIT="> /tmp/saveit"

$ echo xxx $SENDIT

XXX > /tmp/saveit

$ cat /tmp/saveit
cat: /tmp/saveit: No such file or directory

In fact, the shell does not redirect the output—it recognizes input and output redi-
rection before it evaluates variables. When it executes the command line, the shell
checks for redirection and, finding none, evaluates the SENDIT variable. After

340 CHAPTER9 THE BOURNE AGAIN SHELL

replacing the variable with > /tmp/saveit, bash passes the arguments to echo, which
dutifully copies its arguments to standard output. No /tmp/saveit file is created.

The following sections provide more detailed descriptions of the steps involved in
command processing. Keep in mind that double and single quotation marks cause
the shell to behave differently when performing expansions. Double quotation
marks permit parameter and variable expansion but suppress other types of expan-
sion. Single quotation marks suppress all types of expansion.

BRACE EXPANSION

Brace expansion, which originated in the C Shell, provides a convenient way to
specify filenames when pathname expansion does not apply. Although brace expan-
sion is almost always used to specify filenames, the mechanism can be used to gen-
erate arbitrary strings; the shell does not attempt to match the brace notation with
the names of existing files.

Brace expansion is turned on in interactive and noninteractive shells by default; you
can turn it off with set +o braceexpand. The shell also uses braces to isolate variable
names (page 298).

The following example illustrates how brace expansion works. The Is command
does not display any output because there are no files in the working directory. The
echo builtin displays the strings that the shell generates with brace expansion. In this
case the strings do not match filenames (there are no files in the working directory.)

$ 1s
$ echo chap_{one, two, three}.txt
chap_one.txt chap_two.txt chap_three.txt

The shell expands the comma-separated strings inside the braces in the echo com-
mand into a SPACE-separated list of strings. Each string from the list is prepended
with the string chap_, called the preamble, and appended with the string .txt, called
the postscript. Both the preamble and the postscript are optional. The left-to-right
order of the strings within the braces is preserved in the expansion. For the shell to
treat the left and right braces specially and for brace expansion to occur, at least one
comma and no unquoted whitespace characters must be inside the braces. You can
nest brace expansions.

Brace expansion is useful when there is a long preamble or postscript. The follow-
ing example copies the four files main.c, fl.c, f2.c, and tmp.c located in the
/usr/local/src/C directory to the working directory:

$ cp /usr/local/src/C/{main,fl,f2,tmp}.c .
You can also use brace expansion to create directories with related names:

$ 1s -F

filel file2 file3

$ mkdir vrs{A,B,C,D,E}

$ 1s -F

filel file2 file3 vrsA/ vrsB/ vrsC/ vrsD/ vrsE/

PROCESSING THE COMMAND LINE 341

The —F option causes Is to display a slash (/) after a directory and an asterisk (%)
after an executable file.

If you tried to use an ambiguous file reference instead of braces to specify the direc-
tories, the result would be different (and not what you wanted):

$ rmdir vrs:

$ mkdir vrs[A-E]

$ 1s -F

filel file2 file3 vrs[A-E]/

An ambiguous file reference matches the names of existing files. Because it found no
filenames matching vrs[A-E], bash passed the ambiguous file reference to mkdir,
which created a directory with that name. Page 241 has a discussion of brackets in
ambiguous file references.

TILDE EXPANSION

Chapter 6 showed a shorthand notation to specify your home directory or the home
directory of another user. This section provides a more detailed explanation of tilde
expansion.

The tilde (~) is a special character when it appears at the start of a token on a com-
mand line. When it sees a tilde in this position, bash looks at the following string of
characters—up to the first slash (/) or to the end of the word if there is no slash—as
a possible username. If this possible username is null (that is, if the tilde appears as
a word by itself or if it is immediately followed by a slash), the shell substitutes the
value of the HOME variable for the tilde. The following example demonstrates this
expansion, where the last command copies the file named letter from Alex’s home
directory to the working directory:

$ echo $HOME
/home/aTlex

$ echo ~
/home/aTlex

$ echo ~/letter
/home/alex/letter
$ cp ~/letter .

If the string of characters following the tilde forms a valid username, the shell sub-
stitutes the path of the home directory associated with that username for the tilde
and name. If it is not null and not a valid username, the shell does not make any
substitution:

$ echo ~jenny

/home/jenny
$ echo ~root
/root

$ echo ~xx
~XX

342 CHAPTER9 THE BOURNE AGAIN SHELL

Tildes are also used in directory stack manipulation (page 292). In addition, ~+ is a
synonym for PWD (the name of the working directory), and ~- is a synonym for
OLDPWD (the name of the previous working directory).

PARAMETER AND VARIABLE EXPANSION

On a command line a dollar sign ($) that is not followed by an open parenthesis
introduces parameter or variable expansion. Parameters include command line, or
positional, parameters (page 438) and special parameters (page 436). Variables
include user-created variables (page 296) and keyword variables (page 301). The
bash man and info pages do not make this distinction, however.

Parameters and variables are not expanded if they are enclosed within single quotation
marks or if the leading dollar sign is escaped (preceded with a backslash). If they are
enclosed within double quotation marks, the shell expands parameters and variables.

ARITHMETIC EXPANSION

The shell performs arithmetic expansion by evaluating an arithmetic expression and
replacing it with the result. Under bash the syntax for arithmetic expansion is

$((expression))

The shell evaluates expression and replaces $((expression)) with the result of the
evaluation. This syntax is similar to the syntax used for command substitution
[$(...)] and performs a parallel function. You can use $((expression)) as an argument
to a command or in place of any numeric value on a command line.

The rules for forming expression are the same as those found in the C programming
language; all standard C arithmetic operators are available (see Table 11-8 on
page 461). Arithmetic in bash is done using integers. Unless you use variables of
type integer (page 301) or actual integers, however, the shell must convert string-
valued variables to integers for the purpose of the arithmetic evaluation.

You do not need to precede variable names within expression with a dollar sign ($).
In the following example, an arithmetic expression determines how many years are
left until age 60:

$ cat age_check

#!/bin/bash

echo -n "How old are you? "

read age

echo "Wow, in $((60-age)) years, you'll be 60!"

$ age_check
How old are you? 55
Wow, in 5 years, you'll be 60!

You do not need to enclose the expression within quotation marks because bash
does not perform filename expansion on it. This feature makes it easier for you to
use an asterisk (%) for multiplication, as the following example shows:

PROCESSING THE COMMAND LINE 343

let builtin

$ echo There are $((60%60%24%365)) seconds in a non-leap year.
There are 31536000 seconds in a non-leap year.

The next example uses wc, cut, arithmetic expansion, and command substitution to
estimate the number of pages required to print the contents of the file letter.txt. The
output of the we (word count) utility used with the -1 option is the number of lines
in the file, in columns 1 through 4, followed by a SPACE and the name of the file (the
first command following). The cut utility with the —c1-4 option extracts the first
four columns.

$ wc -1 Tetter.txt

351 Tetter.txt

$ wc -1 letter.txt | cut -cl-4
351

The dollar sign and single parenthesis instruct the shell to perform command substi-
tution; the dollar sign and double parentheses indicate arithmetic expansion:

$ echo $(($(wc -1 letter.txt | cut -c1-4)/66 + 1))
6

The preceding example sends standard output from we to standard input of cut via
a pipe. Because of command substitution, the output of both commands replaces
the commands between the $(and the matching) on the command line. Arith-
metic expansion then divides this number by 66, the number of lines on a page. A
1 is added at the end because the integer division results in any remainder being

discarded.

Fewer dollar signs ($)

When you use variables within $((and)), the dollar signs that precede individual variable refer-
ences are optional:

$ x=23 y=37

$ echo $((2%$x + 3%$y))
157

$ echo $((2%x + 3%y))
157

Another way to get the same result without using cut is to redirect the input to wc
instead of having wc get its input from a file you name on the command line. When
you redirect its input, wc does not display the name of the file:

$ wc -1 < letter.txt
351

It is common practice to assign the result of arithmetic expansion to a variable:

$ numpages=$(($(wc -1 < letter.txt)/66 + 1))

The let builtin evaluates arithmetic expressions just as the $(()) syntax does. The
following command is equivalent to the preceding one:

$ let "numpages=$(wc -1 < letter.txt)/66 + 1"

344 CHAPTER9 THE BOURNE AGAIN SHELL

The double quotation marks keep the SPACEs (both those you can see and those that
result from the command substitution) from separating the expression into separate
arguments to let. The value of the last expression determines the exit status of let. If
the value of the last expression is 0, the exit status of let is 1; otherwise, the exit sta-
tus is 0.

You can give multiple arguments to let on a single command line:

$ let a=5+3 b=7+2
$ echo $a $b
89

When you refer to variables when doing arithmetic expansion with let or $(()), the
shell does not require you to begin the variable name with a dollar sign ($). Never-
theless, it is a good practice to do so, as in most places you must include this symbol.

COMMAND SUBSTITUTION

Command substitution replaces a command with the output of that command. The
preferred syntax for command substitution under bash follows:

$(command)
Under bash you can also use the following syntax:
‘command®

The shell executes command within a subshell and replaces command, along with
the surrounding punctuation, with standard output of command.

In the following example, the shell executes pwd and substitutes the output of the
command for the command and surrounding punctuation. Then the shell passes the
output of the command, which is now an argument, to echo, which displays it.

$ echo $(pwd)
/home/alex

The next script assigns the output of the pwd builtin to the variable where and dis-
plays a message containing the value of this variable:

$ cat where

where=$ (pwd)

echo "You are using the $where directory."
$ where

You are using the /home/jenny directory.

Although it illustrates how to assign the output of a command to a variable, this
example is not realistic. You can more directly display the output of pwd without
using a variable:

$ cat where2

echo "You are using the $(pwd) directory."
$ where2

You are using the /home/jenny directory.

PROCESSING THE COMMAND LINE 345

$ 1s -1 $(find .

The following command uses find to locate files with the name README in the
directory tree with its root at the working directory. This list of files is standard out-
put of find and becomes the list of arguments to Is.

$ 1s -1 $(find . -name README -print)
The next command line shows the older ‘command® syntax:
$ 1s -1 ‘find . -name README -print'

One advantage of the newer syntax is that it avoids the rather arcane rules for token
handling, quotation mark handling, and escaped back ticks within the old syntax.
Another advantage of the new syntax is that it can be nested, unlike the old syntax.
For example, you can produce a long listing of all README files whose size
exceeds the size of /README with the following command:

-name README -size +$(echo $(cat ./README | wc -c)c) -print)

Try giving this command after giving a set —x command (page 408) to see how bash
expands it. If there is no README file, you just get the output of Is —1.

For additional scripts that use command substitution, see pages 404, 423, and 453.

$((Versus $(

The symbols $((constitute a separate token. They introduce an arithmetic expression, not a com-
mand substitution. Thus, if you want to use a parenthesized subshell (page 289) within $(), you
must insert a SPACE between the $(and the next {.

WORD SPLITTING

The results of parameter and variable expansion, command substitution, and arith-
metic expansion are candidates for word splitting. Using each character of IFS
(page 305) as a possible delimiter, bash splits these candidates into words or tokens.
If IFS is unset, bash uses its default value (SPACE-TAB-NEWLINE). If IFS is null, bash does
not split words.

PATHNAME EXPANSION

Pathname expansion (page 239), also called filename generation or globbing, is the
process of interpreting ambiguous file references and substituting the appropriate
list of filenames. Unless noglob (page 337) is set, the shell performs this function
when it encounters an ambiguous file reference—a token containing any of the
unquoted characters *, ?, [, or]. If bash cannot locate any files that match the spec-
ified pattern, the token with the ambiguous file reference is left alone. The shell does
not delete the token or replace it with a null string but rather passes it to the pro-
gram as is (except see nullglob on page 337).

In the first echo command in the following example, the shell expands the ambigu-
ous file reference tmp+ and passes three tokens (tmp1, tmp2, and tmp3) to echo.
The echo builtin displays the three filenames it was passed by the shell. After rm

346 CHAPTER9

THE BOURNE AGAIN SHELL

Quotation marks

Levels of expansion

removes the three tmp= files, the shell finds no filenames that match tmp+ when it
tries to expand it. Thus it passes the unexpanded string to the echo builtin, which
displays the string it was passed.

$1s

tmpl tmp2 tmp3
$ echo tmp=
tmpl tmp2 tmp3
$ rm tmp

$ echo tmp=
tmp

A period that either starts a pathname or follows a slash (/) in a pathname must be
matched explicitly unless you have set dotglob (page 336). The option nocaseglob
(page 337) causes ambiguous file references to match filenames without regard to case.

Putting double quotation marks around an argument causes the shell to suppress
pathname and all other expansion except parameter and variable expansion. Put-
ting single quotation marks around an argument suppresses all types of expansion.
The second echo command in the following example shows the variable $alex
between double quotation marks, which allow variable expansion. As a result the
shell expands the variable to its value: sonar. This expansion does not occur in the
third echo command, which uses single quotation marks. Because neither single nor
double quotation marks allow pathname expansion, the last two commands display
the unexpanded argument tmp+.

$ echo tmp+ $alex
tmpl tmp2 tmp3 sonar
$ echo "tmp* $alex"
tmp* sonar

$ echo 'tmp* $alex'
tmp= $alex

The shell distinguishes between the value of a variable and a reference to the vari-
able and does not expand ambiguous file references if they occur in the value of a
variable. As a consequence you can assign to a variable a value that includes special
characters, such as an asterisk ().

In the next example, the working directory has three files whose names begin with
letter. When you assign the value letter+ to the variable var, the shell does not
expand the ambiguous file reference because it occurs in the value of a variable (in
the assignment statement for the variable). No quotation marks surround the string
letter+; context alone prevents the expansion. After the assignment the set builtin
(with the help of grep) shows the value of var to be letter=.

The three echo commands demonstrate three levels of expansion. When $var is
quoted with single quotation marks, the shell performs no expansion and passes the
character string $var to echo, which displays it. When you use double quotation
marks, the shell performs variable expansion only and substitutes the value of the var
variable for its name, preceded by a dollar sign. No pathname expansion is performed

CHAPTER SUMMARY 347

on this command because double quotation marks suppress it. In the final command,
the shell, without the limitations of quotation marks, performs variable substitution
and then pathname expansion before passing the arguments to echo.

$ 1s letter=

letterl Tletter2 Tletter3
$ var=letter::

$ set | grep var
var="'letter="'

$ echo '$var’

$var

$ echo "$var"

letters

$ echo $var

letterl letter2 letter3

PROCESS SUBSTITUTION

A special feature of the Bourne Again Shell is the ability to replace filename argu-
ments with processes. An argument with the syntax <(command) causes command
to be executed and the output written to a named pipe (FIFO). The shell replaces
that argument with the name of the pipe. If that argument is then used as the name
of an input file during processing, the output of command is read. Similarly an
argument with the syntax >(command) is replaced by the name of a pipe that com-
mand reads as standard input.

The following example uses sort (page 153) with the -m (merge, which works cor-
rectly only if the input files are already sorted) option to combine two word lists
into a single list. Each word list is generated by a pipe that extracts words matching
a pattern from a file and sorts the words in that list.

$ sort -m -f <(grep "[AA-Z]..$" memol | sort) <(grep ".:*aba.*" memo2 |sort)

CHAPTER SUMMARY

The shell is both a command interpreter and a programming language. As a com-
mand interpreter, the shell executes commands you enter in response to its prompt.
As a programming language, the shell executes commands from files called shell
scripts. When you start a shell, it typically runs one or more startup files.

Running ashell Assuming that the file holding a shell script is in the working directory, there are
script three basic ways to execute the shell script from the command line.

1. Type the simple filename of the file that holds the script.
2. Type a relative pathname, including the simple filename preceded by ./.

3. Type bash followed by the name of the file.

348 CHAPTER9

THE BOURNE AGAIN SHELL

Job control

Variables

Process

History

Command line
editors

Aliases

Functions

Technique 1 requires that the working directory be in the PATH variable. Tech-
niques 1 and 2 require that you have execute and read permission for the file hold-
ing the script. Technique 3 requires that you have read permission for the file
holding the script.

A job is one or more commands connected by pipes. You can bring a job running in
the background into the foreground by using the fg builtin. You can put a fore-
ground job into the background by using the bg builtin, provided that you first sus-
pend the job by pressing the suspend key (typically contrRoL-Z). Use the jobs builtin to
see which jobs are running or suspended.

The shell allows you to define variables. You can declare and initialize a variable by
assigning a value to it; you can remove a variable declaration by using unset. Vari-
ables are local to a process unless they are exported using the export builtin to make
them available to child processes. Variables you declare are called user-created vari-
ables. The shell also defines called keyword variables. Within a shell script you can
work with the command line (positional) parameters the script was called with.

Each process has a unique identification (PID) number and is the execution of a single
Linux command. When you give it a command, the shell forks a new (child) process
to execute the command, unless the command is built into the shell (page 243). While
the child process is running, the shell is in a state called sleep. By ending a command
line with an ampersand (&), you can run a child process in the background and
bypass the sleep state so that the shell prompt returns immediately after you press
RETURN. Each command in a shell script forks a separate process, each of which may in
turn fork other processes. When a process terminates, it returns its exit status to its
parent process. An exit status of zero signifies success and nonzero signifies failure.

The history mechanism, a feature adapted from the C Shell, maintains a list of
recently issued command lines, also called events, that provides a way to reexecute
previous commands quickly. There are several ways to work with the history list;
one of the easiest is to use a command line editor.

When using an interactive Bourne Again Shell, you can edit your command line and
commands from the history file, using either of the Bourne Again Shell’s command
line editors (viim] or emacs). When you use the vi(m) command line editor, you start
in Input mode, unlike the way you normally enter viim). You can switch between
Command and Input modes. The emacs editor is modeless and distinguishes com-
mands from editor input by recognizing control characters as commands.

An alias is a name that the shell translates into another name or (complex) com-
mand. Aliases allow you to define new commands by substituting a string for the
first token of a simple command.

A shell function is a series of commands that, unlike a shell script, are parsed prior
to being stored in memory so that they run faster than shell scripts. Shell scripts are
parsed at runtime and are stored on disk. A function can be defined on the com-
mand line or within a shell script. If you want the function definition to remain in
effect across login sessions, you can define it in a startup file. Like the functions of a
programming language, a shell function is called by giving its name followed by any
arguments.

EXERCISES 349

Shell features There are several ways to customize the shell’s behavior. You can use options on the
command line when you call bash and you can use the bash set and shopt builtins to
turn features on and off.

Command line When it processes a command line, the Bourne Again Shell may replace some words
expansion with expanded text. Most types of command line expansion are invoked by the
appearance of a special character within a word (for example, a leading dollar sign
denotes a variable). See Table 9-6 on page 309 for a list of special characters. The
expansions take place in a specific order. Following the history and alias expan-
sions, the common expansions are parameter and variable expansion, command
substitution, and pathname expansion. Surrounding a word with double quotation
marks suppresses all types of expansion except parameter and variable expansion.
Single quotation marks suppress all types of expansion, as does quoting (escaping) a

special character by preceding it with a backslash.

EXERCISES

1. Explain the following unexpected result:

$ whereis date

date: /bin/date ...

$ echo $PATH
.:/usr/local/bin:/usr/bin:/bin

$ cat > date

echo "This is my own version of date."
$ date

Tue May 22 11:45:49 PDT 2007

2. What are two ways you can execute a shell script when you do not have
execute access permission for the file containing the script? Can you exe-
cute a shell script if you do not have read access permission for the file
containing the script?

3. What is the purpose of the PATH variable?

a. Set the PATH variable so that it causes the shell to search the following
directories in order:

e /usr/local/bin

* /usr/bin

* /bin

* /usr/kerberos/bin

e The bin directory in your home directory
¢ The working directory

b. If there is a file named doit in /usr/bin and another file with the same
name in your ~/bin, which one will be executed? (Assume that you have
execute permission for both files.)

350 CHAPTER9 THE BOURNE AGAIN SHELL

c. If your PATH variable is not set to search the working directory, how
can you execute a program located there?

d. Which command can you use to add the directory /usr/games to the end
of the list of directories in PATH?

4. Assume that you have made the following assignment:
$ person=jenny
Give the output of each of the following commands:
a. echo $person
b. echo '$person’
c. echo "$person"

5. The following shell script adds entries to a file named journal-file in your
home directory. This script helps you keep track of phone conversations
and meetings.

$ cat journal
journal: add journal entries to the file
$HOME/journal-file

file=$HOME/journal-file

date >> $file

echo -n "Enter name of person or group:
read name

echo "$name" >> $file

echo >> $file

cat >> $file

echo M- " >> $file
echo >> $file

a. What do you have to do to the script to be able to execute it?

b. Why does the script use the read builtin (page 445) the first time it
accepts input from the terminal and the cat utility the second time?

6. Assume that the /home/jenny/grants/biblios and /home/jenny/biblios
directories exist. Give Jenny’s working directory after she executes each
sequence of commands given. Explain what happens in each case.

a.

$ pwd
/home/jenny/grants
$ CDPATH=$(pwd)

$ cd

$ cd biblios

$ pwd
/home/jenny/grants
$ CDPATH=$ (pwd)

$ cd $HOME/biblios

ADVANCED EXERCISES

351

7.
8.

Name two ways you can identify the PID number of your login shell.

Give the following command:
$ sleep 30 | cat /etc/inittab

Is there any output from sleep? Where does cat get its input from? What
has to happen before the shell displays another prompt?

ADVANCED EXERCISES

9.

10.
11.

12.

13.

Write a sequence of commands or a script that demonstrates that variable
expansion occurs before pathname expansion.

Write a shell script that outputs the name of the shell that is executing it.

Explain the behavior of the following shell script:

$ cat quote_demo
twoliner="This 1is line 1.
This 1is line 2."

echo "$twoliner"

echo $twoliner

a. How many arguments does each echo command see in this script?
Explain.

b. Redefine the IFS shell variable so that the output of the second echo is
the same as the first.

Add the exit status of the previous command to your prompt so that it
behaves similarly to the following:

$ [0] T1s xxx
1s: xxx: No such file or directory
$ [1]

The dirname utility treats its argument as a pathname and writes to stan-
dard output the path prefix—that is, everything up to but not including
the last component:

$ dirname a/b/c/d
a/b/c

If you give dirname a simple filename (no / characters) as an argument,
dirname writes a . to standard output:

$ dirname simple

Implement dirname as a bash function. Make sure that it behaves sensibly
when given such arguments as /.

352 CHAPTER9 THE BOURNE AGAIN SHELL

14.

15.

Implement the basename utility, which writes the last component of its
pathname argument to standard output, as a bash function. For example,
given the pathname a/b/c/d, basename writes d to standard output:

$ basename a/b/c/d
d

The Linux basename utility has an optional second argument. If you give
the command basename path suffix, basename removes the suffix and the
prefix from path:

$ basename src/shellfiles/prog.bash .bash
prog

$ basename src/shellfiles/prog.bash .c
prog.bash

Add this feature to the function you wrote for exercise 14.

IN THIS CHAPTER

Types of Networks and How

TheyWork.oooovvnee. 355
Network Protocols............. 361
Network Utilities 372

ping: Tests a Network
Connection. 375

traceroute: Traces a Route Over

theInternet 376
host and dig: Query Internet

Nameservers 378
Distributed Computing......... 379
Usenet..............ooviunn 388
WWW: World Wide Web 390

NETWORKING AND THE
INTERNET

The communications facilities linking computers are continually
improving, allowing faster and more economical connections.
The earliest computers were unconnected stand-alone systems.
To transfer information from one system to another, you had to
store it in some form (usually magnetic tape, paper tape, or
punch cards—called IBM or Hollerith cards), carry it to a com-
patible system, and read it back in. A notable advance occurred
when computers began to exchange data over serial lines,
although the transfer rate was slow (hundreds of bits per sec-
ond). People quickly invented new ways to take advantage of
this computing power, such as email, news retrieval, and bulletin
board services. With the speed of today’s networks, a piece of
email can cross the country or even travel halfway around the
world in a few seconds.

Today it would be difficult to find a computer facility that does
not include a LAN to link its systems. Linux systems are typi-
cally attached to an Ethernet (page 1035) network. Wireless
networks are also prevalent. Large computer facilities usually
maintain several networks, often of different types, and almost
certainly have connections to larger networks (companywide or
campuswide and beyond).

353

354 CHAPTER 10 NETWORKING AND THE INTERNET

Internet

Network services

Intranet

The Internet is a loosely administered network of networks (an internetwork) that
links computers on diverse LANs around the globe. An internet (small i) is a generic
network of networks that may share some parts in common with the public Internet.
It is the Internet that makes it possible to send an email message to a colleague thou-
sands of miles away and receive a reply within minutes. A related term, intranet,
refers to the networking infrastructure within a company or other institution. Intra-
nets are usually private; access to them from external networks may be limited and
carefully controlled, typically using firewalls (page 359).

Over the past decade many network services have emerged and become standard-
ized. On Linux and UNIX systems, special processes called daemons (page 1032)
support such services by exchanging specialized messages with other systems over
the network. Several software systems have been created to allow computers to
share filesystems with one another, making it appear as though remote files are
stored on local disks. Sharing remote filesystems allows users to share information
without knowing where the files physically reside, without making unnecessary
copies, and without learning a new set of utilities to manipulate them. Because the
files appear to be stored locally, you can use standard utilities (such as cat, vim, Ipr,
mv, or their graphical counterparts) to work with them.

Developers have created new tools and extended existing ones to take advantage of
higher network speeds and to work within more crowded networks. The rlogin, rsh,
and telnet utilities, which were designed long ago, have largely been supplanted by
ssh (secure shell, page 707) in recent years. The ssh utility allows a user to log in on
or execute commands securely on a remote computer. Users rely on such utilities as
scp and ftp to transfer files from one system to another across the network. Commu-
nication utilities, including email utilities and chat programs (e.g., talk, Internet Relay
Chat [IRC], ICQ, and instant messenger [IM] programs, such as AOLs AIM and
gaim) have become so prevalent that many people with very little computer expertise
use them on a daily basis to keep in touch with friends, family, and colleagues.

An intranet is a network that connects computing resources at a school, company,
or other organization but, unlike the Internet, typically restricts access to internal
users. An intranet is very similar to a LAN (local area network) but is ba